Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Non-invasive real-time measurements of phase content in the reservoir fluid are highly advantageous in the oil and gas industry and remain a current research topic. The paper presents an innovative, self-designed multi-electrode capacitance meter intended for detecting multiphase flow patterns in a low-permittivity medium, such as the reservoir fluid. The capacitance sensor is built with delta-sigma charge modulators capacitance-to-digital converters. Machine learning is applied to convert the capacitance measurements into a tomographic image of the flow pattern. At present, the meter is built with eight electrodes. It is shown that the measurements are repeatable and have a good signal-to-noise ratio. The implemented neural network is capable of correctly reconstructing the tomographic images for a test tube filled with reservoir fluid and placed in various locations inside the test section.
Czasopismo
Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
- TERCJA Measuring and Computer Systems, Dywizjonu 303 5B/24, 80-462 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
- [1] Hu, X., Hu, S., Jin, F., & Huang, S. (Eds.) (2017). Physics of Petroleum Reservoirs. Petroleum Industry Press and Springer-Verlag. doi: 10.1007/978-3-662-53284-3
- [2] Falcone, G., Hewitt, G.F., Alimonti, C., & Harrison B. (2002). Multiphase flow metering: current trends and future developments. Journal of Petroleum Technology, 54(4), 77–84. doi:10.2118/74689-JPT
- [3] Falcone, G., Hewitt, G.F., & Alimonti, C. (2009). Multiphase Flow Metering. Elsevier B.V.
- [4] Thorn, R., Johansen, G.A., & Hjertaker, B.T. (2013). Three-phase flow measurement in the petroleum industry. Measurement Science and Technology, 24(1), 012003. doi: 10.1088/0957-0233/24/1/012003
- [5] Hansen, L.S., Pedersen, S., & Durdevic, P. (2019). Multi-phase flow metering in offshore oil and gas transportation pipelines: trends and perspectives. Sensors, 19(9), 2184, doi: 10.3390/s19092184
- [6] Meribout, M., Azzi, A., Ghendour, N., Kharoua, N., Khezzar, L., & AlHosani, E. (2020). Multiphase flow meters targeting oil & gas industries. Measurement, 165, 108111. doi: 10.1016/j.measurement.2020.108111
- [7] Roxar 2600 Multiphase Flow Meters. Product Data Sheet RXPS002516, Rev B (October 2022). Emerson Electric Co. https://www.emerson.com/ documents/automation/product-datasheet-mpfm-2600-mvg-datasheet-roxar-en-us-170812.pdf [accessed 24 Nov 2023].
- [8] Reinecke, N., & Mewes, D. (1996). Recent developments and industrial/research applications of capacitance tomography. Measurement Science and Technology, 7(3), 233−246. doi: 10.1088/0957-0233/7/3/004
- [9] Rahman, N.A.Abd., Rahim, R.A, Nawi, A.M., Pei Ling, L., Pusppanathan, J., Mohamad, E.J., Seong, C.K., Din S.M., Ayob, N.M.N., & Yunus, F.R.M. (2015). A review on electrical capacitance tomography sensor development. Jurnal Teknologi (Sciences & Engineering), 73(3), 35–41. doi: 10.11113/jt.v73.4244
- [10] Yang, W.Q., & Peng, L. (2003). Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology, 14(1), R1–R13, doi: 10.1088/0957-0233/14/1/201
- [11] Rasel, R.K., Shah, M., Chowdhury, S.M., Marashdeh, Q.M., & Teixeira, F.L. (2022). Review of selected advances in electrical capacitance volume tomography for multiphase flow monitoring. Energies, 15(14), 5285. doi: 10.3390/en15145285
- [12] Nooralahiyan, A.Y., Hoyle, B.S., & Bailey N.J. (1994). Neural network for pattern association in electrical capacitance tomography. IEE Proceedings – Circuits, Devices and Systems, 141(6), 517–521. doi: 10.1049/ip-cds:19941190
- [13] Marashdeh, Q., Warsito, W., Fan, L.S., & Teixeira F.L. (2006). A nonlinear image reconstruction technique for ECT using a combined neural network approach. Measurement Science and Technology, 17(8), 2097−2103. doi: 10.1088/0957-0233/17/8/007
- [14] Flores, N., Kuri-Morales, A., & Gamio, C. (2006). An application of neural networks for image reconstruction in electrical capacitance tomography applied to oil industry. In Progress in Pattern Recognition, Image Analysis and Applications” (pp. 371–380). Proceedings of the 11th Iberoamerican Congress on Pattern Recognition, CIARP 2006, 14–17 November, Cancún, Mexico. Springer-Verlag, doi: 10.1007/11892755
- [15] Chen, X., Hu, H., Liu, F.& Gao, X.X. (2011). Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm. Measurement Science and Technology, 22(10), 104008. doi: 10.1088/0957-0233/22/10/104008
- [16] Wang, H., Hu, H., Wang, L., & Wang, H. (2012). Image reconstruction for an Electrical Capacitance Tomography (ECT) system based on a least squares support vector machine and bacterial colony chemotaxis algorithm. Flow Measurement and Instrumentation, 27, 59–66. doi: 10.1016/j.flowmeasinst.2012.05.006
- [17] Chen, X., Hu, H., Zhang, J. & Zhou, Q., (2012). An ECT system based on improved RBF network and adaptive wavelet image enhancement for solid/gas two-phase flow. Chinese Journal of Chemical Engineering 20(2), 359–367. doi: 10.1016/S1004-9541(12)60399-1
- [18] Xu, Z., Wu, F., Yang, X., & Li Y. (2020). Measurement of gasoil two-phase flow patterns by using CNN algorithm based on dual ECT sensors with Venturi tube. Sensors, 20(4), 1200. doi:10.3390/s20041200
- [19] Nexys A7 FPGA Board Reference Manual, Revised July 10, 2019. Digilent Inc. https://digilent.com/reference/programmablelogic/nexys-a7/reference-manual [accessed 24 Nov. 2023].
- [20] Pmod MTDS Reference Manual. Digilent Inc. https://digilent.com/reference/pmod/pmodmtds/reference-manual [accessed 24 Nov. 2023].
- [21] TensorFlow Core Guide – The Sequential model. TensorFlow. https://www.tensorflow.org/guide/keras/sequential_model [accessed 24 Nov. 2023].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28d8292a-5c96-4b29-9fa5-5b6f00503ea2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.