Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is focusing on the tides and on the strong tidal current generated in the western fjords of Svalbard. Numerical model is chosen as a tool to study the barotropic tides. Model results are compared against measured sea level and drifters. Numerical modeling and observation of tides point that the tidal amplitude does not change strongly in these fjords but the tidal currents are enhanced in several locations, namely at the entrance to the Dickson Fjord, in the narrow passages in proximity to Svea, and in the central part of Van Keulenfjorden. As the strongest currents have been found at the passages at Akseløya Island we have focused our research on this location. The narrow northern channel (Akselsundet) at Akseløya is the main waterway to Svea coal mines. Tidal currents computed and observed at the northern tip of Akseløya Island can reach amplitude from 2 to 3 m s−1. Observation of the deployed drifters and calculation of the seeded particles in the passage at Akseløya depicted a complicated pattern of eddies. The jet-like currents and eddies are quite different at the ebb and flood tide phases. As the Akseløya Island orientation relative to the shore is different for the flood and ebb waters the flow through Akselsundet is differently constrained by this geometry. The observations show that the oscillating tidal motion causes large excursions of the water particle. The drifters released in the passage during flood ended up trapped in the eddy on the eastern side of the island.
Czasopismo
Rocznik
Tom
Strony
318--327
Opis fizyczny
Bibliogr. 16 poz., rys., wykr., fot., mapy
Twórcy
autor
- Institute of Marine Science, University of Alaska Fairbanks, USA
- The University Centre in Svalbard, Norway
autor
- The University Centre in Svalbard, Norway
autor
- Institute of Marine Science, University of Alaska Fairbanks, USA
autor
- The University Centre in Svalbard, Norway
Bibliografia
- Caline, F., 2009. Coastal Sea Ice Conditions Around a Breakwater in a Microtidal, Inner-fjord River Delta in Svalbard (Ph.D. thesis)., 221 pp.
- Defant, A., 1961. Physical Oceanography, vol. II. Pergamon Press, 598 pp.
- Gill, A.E., 1982. Atmosphere—Ocean Dynamics. Academic Press, 662 pp.
- Gjevik, B., Straume, T., 1989. Model simulations of the M2 and the K1 tide in the Nordic Seas and the Arctic Ocean. Tellus 41, 73—96.
- Hendeshott, M.C., 1977. Numerical models of ocean tides. The Sea, vol. 6. John Willey & Sons, New York, 47—96.
- Keulegan, G.H., 1967. Tidal flow in entrances: water level fluctuations of basin in communication with seas. Tech. Bull. No. 14. Committee on Tidal Hydraulics, U.S. Army Corps of Engineers, Washington, DC.
- Kowalik, Z., Luick, J., 2013. The Oceanography of Tides. https:// www.sfos.uaf.edu/directory/faculty/kowalik/Tide_Book/ tide_book.pdf.
- Kowalik, Z., Murty, T.S., 1993. Numerical Modeling of Ocean Dynamics. World Scientific, 481 pp.
- Kowalik, Z., Proshutinsky, A.Yu., 1994. The Arctic Ocean Tides. In: The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geoph. Monograph 85. AGU, 137—158.
- Lalli, F., Bruschi, A., Lama, R., Liberti, L., Stefania Mandrone, S., Pesarino, V., 2010. Coanda effect in coastal flows. Coast. Eng. 57, 278—289.
- Longuet-Higgins, M.S., 1969. On the transport of mass by the time-varying ocean currents. Deep Sea Res. 16, 431—447.
- Marchenko, A.V., Morozov, E.G., 2013. Asymmetric tide in Lake Vallunden (Spitsbergen). Nonlinear Process. Geophys. 20, 935— 944, http://dx.doi.org/10.5194/npg-20-935-2013.
- Marchenko, A., Shestov, A., Karulin, A., Morozov, E., Karulina, M., Bogorodsky, P., Muzylev, S., Onishchenko, D., Makshtas, A., 2011. Field studies of sea water and ice properties in Svalbard fjords. In: POAC11-148. Montreal, Canada 13 pp.
- Ray, R.D., Sanchez, B.V., 1989. Radial deformation of the earth by oceanic tide loading. NASATechnical Memorandum 100743. 51 pp.
- Schwiderski, E.W., 1980. On charting global ocean tides. Rev. Geophys. Space Phys. 18, 243—268.
- Støylen, E., Weber, J.E.H., 2010. Mass transport induced by internal Kelvin waves beneath shore-fast ice. J. Geophys. Res. 115, C03022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28d801a2-d932-446e-8a15-1f13b8d70832