PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A fast evaluation of initial configurations in repeatable inverse kinematics for redundant manipulators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A repeatable inverse kinematic task in robot manipulators consists in finding a loop (cyclic trajectory) in a configuration space, which corresponds to a given loop in a task space. In the robotic literature, an entry configuration to the trajectory is fixed and given by a user. In this paper the assumption is released and a new, indirect method is introduced to find entry configurations generating short trajectories. The method avoids a computationally expensive evaluation of (infinite) many entry configurations for redundant manipulators (for each of them, repeatable inverse kinematics should be run). Some fast-to-compute functions are proposed to evaluate entry configurations and their correlations with resulting lengths of trajectories are computed. It appears that only an original function, based on characteristics of a manipulability subellipsoid, properly distinguishes entry configurations that generate short trajectories. This function can be used either to choose one from a few possible entry configurations or as an optimized function to compute the best initial configuration.
Rocznik
Strony
483--492
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • Faculty of Electronics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Electronics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Electronics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] Chiaverini, S., Oriolo, G. and Walker, I. (2008). Kinematically redundant manipulators, in B. Siciliano and O. Khatib (Eds.), Handbook of Robotics, Springer, Berlin, pp. 245–268.
  • [2] Dixon, W.J. and Massey, F.J. (1969). Introduction to Statistical Analysis, McGraw-Hill, New York, NY.
  • [3] Duleba, I. and Karcz-Duleba, I. (2016). A suboptimal solution of repeatable inverse kinematics in robot manipulators with a free entry configuration, Proceedings of the Mediterranean Conference on Control and Automation, Athens, Greece, pp. 563–568.
  • [4] Duleba, I. and Karcz-Duleba, I. (2017). Suboptimal approximations in repeatable inverse kinematics for robot manipulators, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(2): 209–218.
  • [5] Duleba, I. and Karcz-Duleba, I. (2018). A comparison of methods solving repeatable inverse kinematics for robot manipulators, Archives of Computer Science, (to appear).
  • [6] Duleba, I. and Opałka, M. (2013). On application of elastic band method to repeatable inverse kinematics in robot manipulators, Journal of Automation, Mobile Robotics and Intelligent Systems 7(4): 5–12.
  • [7] Golub, G. and Reinsch, C. (1970). Singular value decomposition and least squares solutions, Numerische Mathematik 14(5): 403420.
  • [8] Karpińska, J. (2012). Approximation of Algorithms for Robot Motion Planning, PhD thesis, Wrocław University of Technology, Wrocław, (in Polish).
  • [9] Kendall, M. and Gibbons, J. (1990). Rank Correlation Methods, E. Arnold, London.
  • [10] Klein, C., Chu-Jeng, C. and Ahmed, S. (1995). A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators, IEEE Transactions on Robotics and Automation 11(1): 50–55.
  • [11] Maciejewski, A. and Klein, C. (1989). The singular value decomposition: Computation and applications to robotics, International Journal of Robotics Research 8(6): 63–79.
  • [12] Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization, Addison Wesley, New York, NY.
  • [13] Németh, B., Gáspár, P. and Péni, T. (2016). Nonlinear analysis of vehicle control actuations based on controlled invariant sets, International Journal of Applied Mathematics and Computer Science 26(1): 31–43, DOI: 10.1515/amcs-2016-0003.
  • [14] Quinlan, S. and Khatib, O. (1993). Elastic bands: Connecting path and control, Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, Vol. 2, pp. 802–807.
  • [15] Richter, S. and DeCarlo, R. (1983). Continuation methods: Theory and applications, IEEE Transactions on Automatic Control 28(6): 660–665.
  • [16] Roberts, R. and Maciejewski, A. (1993). Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Transactions on Automatic Control 38(5): 689–699.
  • [17] Spong, M. and Vidyasagar, M. (1989). Introduction to Robotics. Robot Dynamics and Control,MIT Press, Cambridge, MA.
  • [18] Tchoń, K., Karpińska, J. and Janiak, M. (2009). Approximation of Jacobian inverse kinematics algorithms, International Journal of Applied Mathematics and Computer Science 19(4): 519–531, DOI: 10.2478/v10006-009-0041-3.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28d6e01c-5b23-491a-90e7-41c98eb19831
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.