PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the mechanical and electromagnetic properties of white Portland cement paste containing basalt fiber

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The search for construction materials that contribute to 5G signal transmission is important for the development of modern communication technologies. In this paper, the mechanical properties of white Portland cement (WPC) paste mixed with basalt fiber (BF) were analyzed and its electromagnetic properties were fully investigated. First, the fluidity and strength of WPC pastes with different BF contents were tested. Subsequently, the electromagnetic parameters of WPC paste samples were tested in the frequency band of 3.94 GHz-5.99 GHz, and their electromagnetic transmission properties were calculated. Finally, the mechanism of BF affecting the strength and electromagnetic transmission performance of WPC pastes was profiled using scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results show that BF can reduce the fluidity of WPC pastes. With the increase of BF doping, the strength of WPC paste rises and then decreases, and reaches the maximum strength when the volume content of BF is 0.6%. With the increase of BF content, the electromagnetic wave reflection rate of WPC paste decreases, but the absorption and transmission rate increases. The bridging effect of BF, etc. improves the strength of the paste. In WPC pastes, with the increase of BF doping, the increase of electromagnetic wave absorption rate is smaller than the decrease of reflection rate, which leads to the improvement of electromagnetic transmission performance.
Rocznik
Strony
art. no. e63, 2023
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
autor
  • Faculty of Science, Beijing University of Technology, Beijing 100124, China
Bibliografia
  • 1. Velay-Lizancos M, Martinez-Lage I, Azenha M, Granja J, Vazquez-Burgo P. Concrete with fine and coarse recycled aggregates: E-modulus evolution, compressive strength and non-destructive testing at early ages. Constr Build Mater. 2018;193:323-31.
  • 2. Wang Y, Zhang H, Geng Y, Wang Q, Zhang S. Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate. Constr Build Mater. 2019;215: 332-346.
  • 3. L. Guenego, F. Rivet, G. Ferre, A. Walzik, A. Souhayl, A. Karbab, A low-cost IoT-based device to measure exposure to sub-6GHz 5G waves, in: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2021, pp. 1-4.
  • 4. Thomas Basikolo TY, Sakurai M. Electromagnetic Field Exposure Evaluation for 5G in Millimeter Wave Frequency Band. In: 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting. New York: IEEE; 2019. p. 1523-4.
  • 5. Thors B, Colombi D, Ying Z, Bolin T, Tornevik C. Exposure to RF EMF from array antennas in 5G mobile communication equipment. IEEE Access. 2016;4:7469-78.
  • 6. Guan H, Liu S, Duan Y, Zhao Y. Investigation of the electromagnetic characteristics of cement based composites filled with EPS. Cem Concr Compos. 2007;29:49-54.
  • 7. Xie S, Ji Z, Zhu L, Zhang J, Cao Y, Chen J, Liu R, Wang J. Recent progress in electromagnetic wave absorption building materials. J Build Eng. 2020;27:100963.
  • 8. Ozturk M, Akgol O, Sevim UK, Karaaslan M, Demirci M, Unal E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr Build Mater. 2018;165:58-63.
  • 9. Xu S, Shen Y, Li Q, Liu X. Hybrid effects of polyvinyl alcohol (PVA) and basalt fibers on microwave absorption of cement composites with fly ash. J Am Ceram Soc. 2021;104:6345-63.
  • 10. Guo AL, Gao R, Ba HJ. Electromagnetic properties of bearing cement-based materials. Adv Mat Res. 2011;261-263:663-8.
  • 11. Guan H, Liu S, Duan Y, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cem Concr Compos. 2006;28:468-74.
  • 12. Li J, Cheng G, Huang S, Huang L. Effect of Ti on crystal transition and solid solution characteristics of white Portland cement clinker. Adv Cem Res. 2021;33:304-10.
  • 13. Veiga KK, Gastaldini ALG. Sulfate attack on a white Portland cement with activated slag. Constr Build Mater. 2012;34:494-503.
  • 14. Lubeck A, Gastaldini ALG, Barin DS, Siqueira HC. Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cem Concr Compos. 2012;34:392-9.
  • 15. Torkittikul P, Chaipanich A. Investigation of the mechanical and in vitro biological properties of ordinary and white Portland cements. ScienceAsia. 2009;35:358.
  • 16. Hosseini P, Abolhasani M, Mirzaei F, Kouhi Anbaran MR, Khaksari Y, Famili H. Influence of two types of nanosilica hydrosols on short-term properties of sustainable white Portland cement mortar. J Mater Civil Eng. 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002152.
  • 17. Jia S, Richardson IG. Micro- and nano-structural evolutions in white Portland cement/pulverized fuel ash cement pastes due to deionized-water leaching. Cem Concr Res. 2018;103:191-203.
  • 18. Stoyanov V, Kostova B, Petkova V, Pelovski Y. Structure of white cement mortars with high content of marble powder. J Therm Anal Calorim. 2012;110:405-12.
  • 19. Koppel T, Shishkin A, Haldre H, Toropovs N, Vilcane I, Tint P. Reflection and transmission properties of common construction materials at 2.4 GHz frequency. Energy Procedia. 2017;113:158-65.
  • 20. Cao J, Chung DDL. Use of fly ash as an admixture for electromagnetic interference shielding. Cem Concr Res. 2004;34:1889-92.
  • 21. Ozturk M, Karaaslan M, Akgol O, Sevim UK. Mechanical and electromagnetic performance of cement based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cem Concr Res. 2020;136: 106177(1-9).
  • 22. Ye HQ, Li Z, Peng Y, Wang CC, Li TY, Zheng YX, Sapelkin A, Adamopoulos G, Hernandez I, Wyatt PB, Gillin WP. Organo-erbium systems for optical amplification at telecommunications wavelengths. Nat Mater. 2014;13:382-6.
  • 23. Du Q, Cai C, Lv J, Wu J, Pan T, Zhou J. Experimental investigation on the mechanical properties and microstructure of basalt fiber reinforced engineered cementitious composite. Materials (Basel). 2020;13: 37969 (1-12).
  • 24. Liu Y, Yu Y, Du H. The influence of two types of functional particles on the electromagnetic properties and mechanical properties of double-layer coated basalt fiber fabrics. Text Res J. 2022;92: 591-604.
  • 25. Li Z, Ma J. Experimental study on mechanical properties of the sandwich composite structure reinforced by basalt fiber and nomex honeycomb. Materials (Basel). 2020;13: 1870 (1-17).
  • 26. Shen Y, Li Q, Xu S, Liu X. Electromagnetic wave absorption of multifunctional cementitious composites incorporating polyvinyl alcohol (PVA) fibers and fly ash: effects of microstructure and hydration. Cem Concr Res. 2021;143: 106389(1-15).
  • 27. Wanasinghe D, Aslani F, Ma G. Effect of water to cement ratio, fly ash, and slag on the electromagnetic shielding effectiveness of mortar. Constr Build Mater. 2020;256: 119409(1-14).
  • 28. Silva FGS, Fiuza Junior RA, da Silva JS, de Brito CMSR, Andrade HMC, Goncalves JP. Consumption of calcium hydroxide and formation of C-S-H in cement pastes. J Therm Anal Calorim. 2013;116:287-93.
  • 29. ASTM Committee on Standards, ASTM 1437-20, Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, Pennsylvania, 2020.
  • 30. ASTM C1437. Standard test method for flexural strength of hydraulic-cement mortars. West Conshohocken: American Society for Testing and Materials International; 2008.
  • 31. ASTM Committee on Standards, ASTM C109M-21, Standard Test Method for Compressive Strength of Hydraulic-Cement Mortar, ASTM International, Pennsylvania, 2021.
  • 32. Saini P, Aror M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New polymers for special applications. 2012; 71-112.
  • 33. Deak T, Czigany T. Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J. 2009;79:645-51.
  • 34. Kim M-S, Park S-J. Influence of fiber array direction on mechanical interfacial properties of basalt fiber-reinforced composites. Polym Korea. 2015;39:219-24.
  • 35. Li Z, Ma J, Ma H, Xu X. Properties and applications of basalt fiber and its composites. IOP Conf Ser. 2018;186: 012052(1-8).
  • 36. Kang Y-Q, Cao M-S, Yuan J, Zhang L, Wen B, Fang X-Y. Preparation and microwave absorption properties of basalt fiber/nickel core-shell heterostructures. J Alloys Compd. 2010;495:254-9.
  • 37. Prasad R, Mahmoud AE-R, Parashar SKS. Enhancement of electromagnetic shielding and piezoelectric properties of white Portland cement by hydration time. Constr Build Mater. 2019;204:20-7.
  • 38. Reid AH, Kimel AV, Kirilyuk A, Gregg JF, Rasing T. Optical excitation of a forbidden magnetic resonance mode in a doped lutetium-iron-garnet film via the inverse Faraday effect. Phys Rev Lett. 2010;105: 107402.
  • 39. Baoyi L, Yuping D, Yuefang Z, Shunhua L. Electromagnetic wave absorption properties of cement-based composites filled with porous materials. Mater Des. 2011;32:3017-20.
  • 40. Chen X-G, Cheng J-P, Lv S-S, Zhang P-P, Liu S-T, Ye Y. Preparation of porous magnetic nanocomposites using corncob powders as template and their applications for electromagnetic wave absorption. Compos Sci Technol. 2012;72:908-14.
  • 41. Wang Q, Yi Y, Ma G, Luo H. Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash. Cem Concr Compos. 2019;97:357-68.
  • 42. Afroz M, Venkatesan S, Patnaikuni I. Effects of hybrid fibers on the development of high volume fly ash cement composite. Constr Build Mater. 2019;215:984-97.
  • 43. Ahmad MR, Chen B, Yu J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Compos Part B-Eng. 2019;168:204-17.
  • 44. Asprone D, Cadoni E, Iucolano F, Prota A. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cem Concr Compos. 2014;53:52-8.
  • 45. Zeng Q, Li K, Fen-chong T, Dangla P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem Concr Res. 2012;42:194-204.
  • 46. Kolokolova L, Gustafson A. S., Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories. J Quant Spectrosc Ra, 2001; 70:611-625.
  • 47. Zhou H, Wang J, Zhuang J, Liu Q. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale. 2013;5:12502-11.
  • 48. Wang J, Dong S, Pang SD, Zhou C, Han B. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes. Cem Concr Compos. 2022;128:104453.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28d53996-4a5c-47a7-8d4a-501c5676a5b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.