PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of resorcinol onto synthetic calcium phosphate compounds: Kinetic, isotherm, and thermodynamic studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using batch adsorption methods, this work examines the adsorption behavior of resorcinol onto two artificial calcium phosphate compounds, tricalcium phosphate apatite (PTCa) and octocalcium phosphate apatite (OCPa). The study is to assess these materials’ adsorption capacities and investigate the impacts of important parameters like pH, temperature, starting concentration, and adsorbent dosage. When both the Freundlich and Langmuir isotherm models were used, the Langmuir model fit the data better, suggesting monolayer adsorption. PTCa and OCPa were shown to have maximal adsorption capabilities of 13.27 mg/g and 5.05 mg/g, respectively. According to kinetic studies, the adsorption process exhibits pseudo-second-order kinetics, which points to chemisorption. The adsorption is exothermic and spontaneous, driven by physical interactions including van der Waals forces and hydrogen bonds, according to thermodynamic considerations. The study comes to the conclusion that PTCa and OCPa, with their high adsorption capacities and advantageous thermodynamic and kinetic properties, are attractive materials for the elimination of resorcinol from aqueous solutions.
Słowa kluczowe
Twórcy
  • Laboratory of Organic Chemistry, catalysis and environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco.
  • Laboratory of Organic Chemistry, catalysis and environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco.
  • Laboratory of Organic Chemistry, catalysis and environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco.
  • Laboratory of Organic Chemistry, catalysis and environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco.
Bibliografia
  • 1. Adam, O. (2016). Removal of resorcinol from aqueous solution by activated carbon: Isotherms, thermodynamics and kinetics. American Chemical Science Journal, 16(1), 1–13. https://doi.org/10.9734/acsj/2016/27637
  • 2. Agarwal, S., Rani, A. (2017). Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 5(1), 526–538. https://doi.org/10.1016/j.jece.2016.11.035
  • 3. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. In Process Biochemistry 40(3–4), 997–1026. https://doi.org/10.1016/j.procbio.2004.04.008
  • 4. Anku, W. W., Mamo, M.A., Govender, P.P. 2017. Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In Phenolic Compounds - Natural Sources, Importance and Applications. InTech. https://doi.org/10.5772/66927
  • 5. Bouyarmane et al. (2014). Etude des processus d’adsorption et de photodégradation des polluants organiques supportés sur les composites TiO2-Apatite (Thèse de Doctorat). Université Mohamed V, Rabat, Maroc.
  • 6. Demirbas, A., Sari, A., Isildak, O. (2006). Adsorption thermodynamics of stearic acid onto bentonite. Journal of Hazardous Materials, 135(1–3), 226– 231. https://doi.org/10.1016/j.jhazmat.2005.11.056
  • 7. El Asri. (2009). Nouveaux matériaux de structure apatite préparés à partir du phosphate naturel marocain à applications environnementales (Thèse de Doctorat). Université Mohamed V, Rabat, Maroc
  • 8. El Bakri, A., El Boujaady, H., Ferraa, N., Bennani- Ziatni, M. (2024a). The removal of phenol through adsorption onto synthetic calcium phosphates – a study encompassing analyses of kinetics and thermodynamics. Ecological Engineering and Environmental Technology, 25(4), 301–315. https://doi.org/10.12912/27197050/184155
  • 9. El Bakri, A., Ferraa, N., Rhilassi, A. El, Bennani- Ziatni, M. (2024b). Resorcinol elimination through adsorption onto synthetic calcium phosphates: investigations into kinetics and thermodynamics. In International Journal of Chemical and Biochemical Sciences (IJCBS) 25(13). www.iscientific.org/ Journal.html
  • 10. El Boujaady, H., El Rhilassi, A., Bennani-Ziatni, M., El Hamri, R., Taitai, A., Lacout, J. L. (2011). Removal of a textile dye by adsorption on synthetic calcium phosphates. In Desalination 275(1–3), 10–16. https://doi.org/10.1016/j.desal.2011.03.036
  • 11. El Boujaady, H., Mourabet, M., Bennani-Ziatni, M., Taitai, A. (2014). Adsorption/desorption of Direct Yellow 28 on apatitic phosphate: Mechanism, kinetic and thermodynamic studies. Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 64–73. https://doi.org/10.1016/j. jaubas.2013.09.001
  • 12. El Boujaady, H., Mourabet, M., El Rhilassi, A., Bennani-Ziatni, M., El Hamri, R., Taitai, A. (2017). Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium phosphate. Journal of Saudi Chemical Society, 21, 94– 100. https://doi.org/10.1016/j.jscs.2013.10.009
  • 13. El Rhilassi, A., Mourabet, M., El Boujaady, H., Bennani-Ziatni, M., Hamri, R. El, Taitai, A. (2012). Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral. Applied Surface Science, 259, 376–384. https://doi.org/10.1016/j.apsusc.2012.07.055
  • 14. Farhan Hanafi, M., Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31, A141–A150. https://doi.org/10.1016/j. matpr.2021.01.258
  • 15. Fiamegos, Y., Stalikas, C., Pilidis, G. (2002). 4-Aminoantipyrine spectrophotometric method of phenol analysis Study of the reaction products via liquid chromatography with diode-array and mass spectrometric detection. In Analytica Chimica Acta 467.
  • 16. Freundlich, H. (1926). Colloid and Capillary Chemistry, Methuen, London.
  • 17. Guo, Y., Zhu, Z., Qiu, Y., Zhao, J. (2013). Enhanced adsorption of acid brown 14 dye on calcined Mg/ Fe layered double hydroxide with memory effect. Chemical Engineering Journal, 219, 69–77. https:// doi.org/10.1016/j.cej.2012.12.084
  • 18. Hejazi, F., Ghoreyshi, A.A., Rahimnejad, M. (2019). Simultaneous phenol removal and electricity generation using a hybrid granular activated carbon adsorption-biodegradation process in a batch recycled tubular microbial fuel cell. Biomass and Bioenergy, 129. https://doi.org/10.1016/j.biombioe.2019.105336
  • 19. Iftikhar, T., Asif, M., Aziz, A., Ashraf, G., Jun, S., Li, G., Liu, H. (2021). Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. In Trends in Environmental Analytical Chemistry 31. Elsevier B.V. https://doi.org/10.1016/j.teac.2021.e00138
  • 20. Lagergren, S. (1898). About the theory of so called adsorption of soluble substances, S. Vetenskapsakad, Hand. Band, 24(4), 1–39.
  • 21. Langmuir, Irving, B. (1916). The evaporation, condensation and reflection of molecules and the mechanism of adsorption.
  • 22. Li, Q., Yu, H., Song, J., Pan, X., Liu, J., Wang, Y., Tang, L. (2014). Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution. Applied Surface Science, 290, 260–266. https://doi.org/10.1016/j. apsusc.2013.11.065
  • 23. Lian, Q., Islam, F., Ahmad, Z. U., Lei, X., Depan, D., Zappi, M., Gang, D. D., Holmes, W., & Yan, H. (2021). Enhanced adsorption of resorcinol onto phosphate functionalized graphene oxide synthesized via Arbuzov Reaction: A proposed mechanism of hydrogen bonding and π-π interactions. Chemosphere, 280. https://doi.org/10.1016/j. chemosphere.2021.130730
  • 24. Lian, Q., Konggidinata, M.I., Ahmad, Z.U., Gang, D.D., Yao, L., Subramaniam, R., Revellame, E., Holmes, W.B., Zappi, M. (2019). Combined effects of textural and surface properties of modified ordered mesoporous carbon (OMC) on BTEX adsorption. Journal of Hazardous Materials, 377, 381– 390. https://doi.org/10.1016/j.jhazmat.2019.05.079
  • 25. Lian, Q., Yao, L., Uddin Ahmad, Z., Gang, D. D., Konggidinata, M. I., Gallo, A. A., & Zappi, M. E. (2020). Enhanced Pb(II) adsorption onto functionalized ordered mesoporous carbon (OMC) from aqueous solutions: the important role of surface property and adsorption mechanism. Environmental Science and Pollution Research, 27(19), 23616–23630. https://doi.org/10.1007/s11356-020-08487-9
  • 26. Lin, K., Pan, J., Chen, Y., Cheng, R., Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Journal of Hazardous Materials, 161(1), 231–240. https://doi.org/10.1016/j.jhazmat.2008.03.076
  • 27. Mahmoodi, N. M., Hayati, B., Arami, M., Lan, C. (2011). Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268(1–3), 117– 125. https://doi.org/10.1016/j.desal.2010.10.007
  • 28. McQuillan, R. V., Stevens, G. W., Mumford, K. A. (2018). The electrochemical regeneration of granular activated carbons: A review. In Journal of Hazardous Materials 355, 34–49. Elsevier B.V. https:// doi.org/10.1016/j.jhazmat.2018.04.079
  • 29. Mousa, Mohammad. 2009. Removal of various aromatic compounds from synthetic and refinery wastewater using soybean peroxidase. Library and Archives Canada = Bibliothèque et Archives Canada.
  • 30. Nawaz, T., Sengupta, S. (2019). Contaminants of Emerging Concern: Occurrence, Fate, and Remediation. In Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries, 67–114. Elsevier. https://doi.org/10.1016/B978-0-12-814790-0.00004-1
  • 31. Norwitz, G., Bardsley, A.H., Keliher, P.N. (1981). Determination of Phenol in the Presence of Sulfite (Sulfur Dioxide) by the Aminoantipyrine Pectrophotometric Method. Analytica Chimica Acta, 128, 251–256.
  • 32. Nouacer, S. (2015). Application des tiges de dattes dans l’adsorption de métaux toxiques de l’eau (Thèse de Doctorat). Université Badi Mokhtar, Anaba, Algerie.
  • 33. Oliver. (2011). Intensification of Activated Sludge Process – the Impact of Ozone and Activated Carbon (Thèse de Doctorat). Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia
  • 34. Rodríguez, E., Encinas, A., Masa, F.J., Beltrán, F.J. (2008). Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption. Chemosphere, 70(8), 1366–1374. https://doi.org/10.1016/j. chemosphere.2007.09.035
  • 35. Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M.J., Izquierdo, C. (2015). Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration. In Microporous and Mesoporous Materials 202, 259–276. Elsevier. https://doi.org/10.1016/j.micromeso.2014.02.045
  • 36. Schrör, J.-P., & Moers, A. (2018). The endophytic fungus Stemphylium globuliferum – secondary metabolites and biological activities.
  • 37. Subramanyam, R., & Mishra, I. M. (2013). Critical Review of Anaerobic Biodegradation of Benzenediols: Catechol, Resorcinol, and Hydroquinone. https://doi.org/10.1061/(ASCE)HZ
  • 38. Sun, J., Liu, X., Zhang, F., Zhou, J., Wu, J., Alsaedi, A., Hayat, T., & Li, J. (2019). Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 22–30. https://doi.org/10.1016/j.colsurfa.2018.11.042
  • 39. Suresh, S., Srivastava, V. C., & Mishra, I. M. (2012). Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: A review. In International Journal of Energy and Environmental Engineering (Vol. 3, Issue 1). Springer Verlag. https://doi.org/10.1186/2251-6832-3-32
  • 40. Sylvie Lacombe et Thu-Hoa Tran-Thi 2007. La photocatalyse pour l’élimination des polluants. L’actualité chimique, n° 308-309 79.
  • 41. Tang, W., Huang, H., Gao, Y., Liu, X., Yang, X., Ni, H., & Zhang, J. (2015). Preparation of a novel porous adsorption material from coal slag and its adsorption properties of phenol from aqueous solution. Materials and Design, 88, 1191–1200. https:// doi.org/10.1016/j.matdes.2015.09.079
  • 42. Thakur, K., & Kandasubramanian, B. (2019). Graphene and graphene oxide-based composites for removal of organic pollutants: a review. In Journal of Chemical and Engineering Data 64(3), 833–867. American Chemical Society. https://doi.org/10.1021/acs.jced.8b01057
  • 43. Wang, S., Li, H., Xie, S., Liu, S., & Xu, L. (2006). Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere, 65(1), 82–87. https://doi.org/10.1016/j.chemosphere.2006.02.043
  • 44. Wang, T., Xu, Z. Y., Wu, L. G., Li, B. R., Chen, M. X., Xue, S. Y., Zhu, Y. C., & Cai, J. (2017). Enhanced photocatalytic activity for degrading phenol in seawater by TiO2-based catalysts under weak light irradiation. RSC Advances, 7(51), 31921–31929. https://doi.org/10.1039/c7ra04732k
  • 45. Weber, B., Chavez, A., Morales-Mejia, J., Eichenauer, S., Stadlbauer, E. A., & Almanza, R. (2015). Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry. Journal of Environmental Management, 161, 137–143. https://doi.org/10.1016/j. jenvman.2015.06.046
  • 46. Yan, X., Li, Y., Hu, X., Feng, R., Zhou, M., & Han, D. (2021). Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets. Chinese Journal of Chemical Engineering, 33, 279–285. https://doi.org/10.1016/j.cjche.2020.06.027
  • 47. Yon Oepen, B., K6rdel, W., & Klein, W. (1991). Sorption of Nonpolar and Polar Compounds to Soils: Processes, Measurements and Experience with the Applicability of the Modified OECD-Guideline 106, 22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28d3cf29-eed5-47b9-a30d-504147bba416
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.