PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensorless control with multi-scalar transformation of five-phase IPMSM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article proposes sensorless multiscalar control for a multiphase interior permanent magnet synchronous machine. The chosen parameters are estimated using an adaptive observer structure. In the proposed solution, the machine model vector form is in the stationary reference frame (𝛼𝛽), and transformation to (𝑑𝑞) – the coordinate system is unnecessary to implement the proposed control structure. In the control structure, the nonlinear model linearization is based on demonstrated nonlinear variables transformation for (𝛼𝛽)(𝑖) orthogonal planes. Using the proposed control technique, mechanical and electromagnetic subsystems are decoupled, which is the main advantage of this control structure. To provide a comparative analysis, the proposed multiscalar control structure is also compared with the existing multiscalar control scheme. Finally, the simulation and experimental results are demonstrated to validate the performance of the proposed control solution for a sensorless five-phase interior permanent magnet synchronous motor test setup.
Rocznik
Strony
art. no. e154281
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Electrical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar-382426, Gujarat, India
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Department of Electrical Engineering, Marwadi University, Rajkot, Gujarat, India
Bibliografia
  • [1] S. Rubino, O. Dordevic, E. Armando, I.R. Bojoi, and E. Levi, “A Novel Matrix Transformation for Decoupled Control of Modular Multiphase PMSM Drives,” IEEE Trans. Power. Electron., vol. 36, no. 7, pp. 8088–8101, Jul. 2021, doi: 10.1109/TPEL. 2020.3043083.
  • [2] E. Levi, F. Barrero, and M.J. Duran, “Multiphase machines and drives-revisited,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 429–432, 2016, doi: 10.1109/TIE.2015.2493510.
  • [3] B.M. Wilamowski and J. David Irwin, Power Electronics and Motor Drives (The Industrial Electronics Handbook), Chapter 27, CRC Press, 2011.
  • [4] L. Parsa and H.A. Toliyat, “Five-phase permanent-magnet motor drives,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 30–37, Jan. 2005, doi: 10.1109/TIA.2004.841021.
  • [5] J. Li, B. Du, T. Zhao, Y. Cheng, and S. Cui, “Third-Harmonic Current Injection Control of Five-Phase Permanent-Magnet Synchronous Motor Based on Third-Harmonic Current Reference Online Identification,” IEEE Access, vol. 11, pp. 41840–41847, 2023, doi: 10.1109/ACCESS.2023.3269282.
  • [6] G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives – A review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830–5842, Jul. 2020, doi: 10.1109/TIE.2019.2955409.
  • [7] Xu D, Wang B, Zhang G, Wang G, and Yu Y, “A Review of Sensorless Control Methods for AC Motor Drives,” CES Trans. Electr. Mach. Syst., vol. 2, no. 1, pp. 104–115, 2018, doi: 10.23919/TEMS.2018.8326456.
  • [8] S.K. Sul and S. Kim, “Sensorless control of IPMSM: Past, present, and future,” IEEJ J. Ind. Appl., vol. 1, no. 1, pp. 15–23, 2012, doi: 10.1541/ieejjia.1.15.
  • [9] S. Sul, Y. Kwon, and Y. Lee, “Sensorless Control of IPMSM for Last 10 Years and Next 5 Years,” CES Trans. Electr. Mach. Syst., vol. 1, no. 2, pp. 91–99, 2017, doi: 10.23919/TEMS.2017.7961290.
  • [10] B. Tian, M. Molinas, and Q. An, “PWM Investigation of a Field-Oriented Controlled Five-Phase PMSM under Two-Phase Open Faults,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 580–593, Jun. 2021, doi: 10.1109/TEC.2020.3029264.
  • [11] B. Tian, L. Sun, M. Molinas, and Q.T. An, “Repetitive Control Based Phase Voltage Modulation Amendment for FOC-Based Five-Phase PMSMs under Single-Phase Open Fault,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 1949–1960, Mar. 2021, doi: 10.1109/TIE.2020.2975502.
  • [12] W. Li, G. Feng, Z. Li, M.S. Toulabi, and N. Kar, “Extended Kalman Filter Based Inductance Estimation for Dual Three-Phase Permanent Magnet Synchronous Motors Under the Single Open-Phase Fault,” IEEE Trans. Energy Convers., vol. 37, no. 2, pp. 1134–1144, Jun. 2022, doi: 10.1109/TEC.2021.3129283.
  • [13] P. Song, W. Li, Z. Li, M.S. Toulabi, and N.C. Kar, “Noise and Vibration Prediction of a Six-Phase IPMSM in a Single Open-Phase Failure Under a Negative Sequence Current Compensated Fault Tolerant Control Mode,” IEEE Trans. Magn., vol. 58, no. 8, p. 8202806, Aug. 2022, doi: 10.1109/TMAG.2022.3146373.
  • [14] Z. Liu, Y. Li, and Z. Zheng, “A review of drive techniques for multiphase machines,” CES Trans. Electr. Mach. Syst., vol. 2, no. 2, pp. 243–251, Jun. 2018, doi: 10.30941/cestems.2018.00030.
  • [15] L. Zhang, X. Zhu, R. Cui, and S. Han, “A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 7825–7836, Aug. 2022, doi: 10.1109/TIE.2021.3106012.
  • [16] F. Barrero and M.J. Duran, “Recent advances in the design, modeling, and control of multiphase machines – Part I,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 449–458, Jan. 2016, doi: 10.1109/TIE.2015.2447733.
  • [17] M.J. Duran and F. Barrero, “Recent advances in the design, modeling, and control of multiphase machines – Part II,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 459–468, Jan. 2016, doi: 10.1109/TIE.2015.2448211.
  • [18] R. Marino, P. Tomei, and C.M. Verrelli, Advances in Industrial Control. Springer London, 2010, doi: 10.1007/978-1-84996-284-1.
  • [19] M.S.R. Saeed, W. Song, B. Yu, and X. Feng, “Generalized Deadbeat Solution for Model Predictive Control of Five-Phase PMSM Drives,” IEEE Trans. Power Electron., vol. 38, no. 4, pp. 5178–5191, Apr. 2023, doi: 10.1109/TPEL.2022.3228074.
  • [20] Y. Luo, K. Yang, and Y. Zheng, “Luenberger Observer-Based Model Predictive Control for Six-Phase PMSM Motor With Localization Error Compensation,” IEEE Trans. Ind. Electron., vol. 70, no. 11, pp. 10800–10810, Nov. 2023, doi: 10.1109/TIE.2022.3229340.
  • [21] P.F.C. Goncalves, S.M.A. Cruz, and A.M.S. Mendes, “Disturbance Observer Based Predictive Current Control of Six-Phase Permanent Magnet Synchronous Machines for the Mitigation of Steady-State Errors and Current Harmonics,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 130–140, Jan. 2022, doi: 10.1109/TIE.2021.3053885.
  • [22] Y. Zafari, A.H. Mazinan, and S. Shoja-Majidabad, “Speed control of five-phase ipmsm through pi, smc and fitsmc approaches under normal and open phase faulty conditions,” Automatika, vol. 58, no. 4, pp. 506–519, 2017, doi: 10.1080/00051144.2018.1478928.
  • [23] G. Liu, C. Geng, and Q. Chen, “Sensorless Control for Five-Phase IPMSM Drives by Injecting HF Square-Wave Voltage Signal into Third Harmonic Space,” IEEE Access, vol. 8, pp. 69712–69721, 2020, doi: 10.1109/ACCESS.2020.2986347.
  • [24] I. Boldea, M.C. Paicu, and G.D. Andreescu, “Active flux concept for motion-sensorless unified AC drives,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2612–2618, 2008, doi: 10.1109/TPEL.2008.2002394.
  • [25] I. Boldea, M.C. Paicu, G.D. Andreescu, and F. Blaabjerg, “‘Active Flux’ DTFC-SVM sensorless control of IPMSM,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 314–322, 2009, doi: 10.1109/TEC.2009.2016137.
  • [26] R. Krishnan, Permanent magnet synchronous and brushless DC motor drives. CRC Press/Taylor & Francis, 2010.
  • [27] G. Wang, G. Zhang, and D. Xu, Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives. Springer Nature Singapore, 2020.
  • [28] D. Vyas, M. Morawiec, T. Ayana, L. Wogi, and J. Guziński, “Active flux based adaptive and non-adaptive observer for sensorless interior permanent magnet synchronous machine drive,” Arch. Electr. Eng., vol. 73, no. 3, pp. 799–815, 2024, doi: 10.24425/aee.2024.150896.
  • [29] D. Vyas, M. Morawiec, and D. Wachowiak, “Rotor flux and EEMF observer for interior permanent magnet synchronous machine,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150327, Jul. 2024, doi: 10.24425/bpasts.2024.150327.
  • [30] M. Morawiec, A. Lewicki, and C.I. Odeh, “Rotor-Flux Vector Based Observer of Interior Permanent Synchronous Machine,” IEEE Trans. Ind. Electron., vol. 71, no. 2, pp. 1399–1409, Feb. 2024, doi: 10.1109/TIE.2023.3250851.
  • [31] J. Guzinski, H. Abu-rub, and S. Patryk, Variable Speed ac Drives with Inverter Output Filters, 1st Ed, John Wiley & Sons, Ltd, 2015. Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. e154281, 2025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28c87715-66f6-42de-9884-a6cbcdfdc8aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.