PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Observer-based sliding-mode fault-tolerant consistent control for hybrid event-triggered multi-agent systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An observer-based hybrid event-triggered sliding mode fault-tolerant consistent control strategy is proposed for actuator faults in nonlinear second-order leader-follower multi-agent systems. A fault observer is designed to obtain the velocity and additive fault of the agents at the current moment. In order to save network resources and avoid the proliferation of actuator fault information, a hybrid event-triggered mechanism is given based on the actuator fault output from the fault observer. Then, a sliding mode fault-tolerant control strategy is investigated based on the speed and hybrid event-triggered mechanism of the fault observer output and combined with a linear sliding mode surface. As a result, the multi-agent system can still realize state consistency when there is an actuator fault. Conditions under which the consistent error of the multi-agent system is bounded are given. Finally, the effectiveness of the designed fault observer, sliding mode fault-tolerant controller, and hybrid event-triggered mechanism is verified by simulation in a leader-follower multi-agent system connected by a directed graph.
Rocznik
Strony
361--373
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • School of Automation, Beijing Information Science and Technology University No.12, Xiaoying East Road, Haidian District, Beijing, China
autor
  • School of Automation, Beijing Information Science and Technology University No.12, Xiaoying East Road, Haidian District, Beijing, China
Bibliografia
  • [1] Åarzén, K.-E. (1999). A simple event-based PID controller, IFAC Proceedings Volumes 32(2): 8687-8692.
  • [2] Aranda-Escolastico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sanchez, J. and Dormido, S. (2020). Event-based control: A bibliometric analysis of twenty years of research, IEEE Access 8: 47188-47208.
  • [3] Chen, L., Xue, H., Liang, H. and Zhao, M. (2023). Adaptive fuzzy fault-tolerant containment control for nonlinear multiagent systems based on modified distributed observer, Fuzzy Sets and Systems 464: 108431.
  • [4] Chen, S., Chen, B. and Shi, F. (2019). Distributed fault-tolerant consensus protocol for fuzzy multi-agent systems, Circuits, Systems, and Signal Processing 38(2): 611-624.
  • [5] Chen, S., Wang, M. and Li, Q. (2020). Second-order consensus of hybrid multi-agent systems with unknown disturbances via sliding mode control, IEEE Access 8: 34973-34980.
  • [6] Cheng, J., Park, J.H., Zhang, L. and Zhu, Y. (2016). An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies, IEEE Transactions on Fuzzy Systems 26(1): 6-18.
  • [7] Darvishpoor, S., Roshanian, J., Raissi, A. and Hassanalian, M. (2020). Configurations, flight mechanisms, and applications of unmanned aerial systems: A review, Progress in Aerospace Sciences 121: 100694.
  • [8] Domyshev, A. and Sidorov, D. (2022). Optimization of the structure of power system multi-agent control, IFAC-PapersOnLine 55(9): 250-255.
  • [9] Dong, L., Yu, D. and Nguang, S.K. (2019). Novel nonsingular terminal sliding mode control for multi-agent tracking systems with application to jerk circuit, IEEE Transactions on Circuits and Systems II: Express Briefs 67(8): 1429-1433.
  • [10] Dong, X., Hua, Y., Zhou, Y., Ren, Z. and Zhong, Y. (2018). Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems, IEEE Transactions on Automation Science and Engineering 16(1): 229-240.
  • [11] Garcia, E. and Antsaklis, P.J. (2012). Model-based event-triggered control for systems with quantization and time-varying network delays, IEEE Transactions on Automatic Control 58(2): 422-434.
  • [12] Gong, S., Zheng, M., Hu, J. and Zhang, A. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.
  • [13] González, A., Sala, A. and Armesto, L. (2022). Decentralized multi-agent formation control with pole-region placement via cone-complementarity linearization, International Journal of Applied Mathematics and Computer Science 32(3): 415-428, DOI: 10.34768/amcs-2022-0030.
  • [14] Hao, L.-Y. and Yang, G.-H. (2013). Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization, ISA Transactions 52(5): 600-610.
  • [15] Hu, T., He, Z., Zhang, X. and Zhong, S. (2020). Leader-following consensus of fractional-order multi-agent systems based on event-triggered control, Nonlinear Dynamics 99(3): 2219-2232.
  • [16] Huang, B., Liu, Y., Xia, Z. and Wang, J. (2022). A bi-event-triggered multi-agent system for distributed optimization, IEEE Transactions on Network Science and Engineering 10(2): 1074-1084.
  • [17] Khalili, M., Zhang, X., Polycarpou, M.M., Parisini, T. and Cao, Y. (2018). Distributed adaptive fault-tolerant control of uncertain multi-agent systems, Automatica 87: 142-151.
  • [18] Khoygani, M. R., Ghasemi, R. and Ghayoomi, P. (2021). Robust observer-based control of nonlinear multi-omnidirectional wheeled robot systems via high order sliding-mode consensus protocol, International Journal of Automation and Computing 18(5): 787-801.
  • [19] Li, G., Wang, X. and Li, S. (2020a). Consensus control of higher-order Lipschitz non-linear multi-agent systems based on backstepping method, IET Control Theory & Applications 14(3): 490-498.
  • [20] Li, G., Wang, X. and Li, S. (2020b). Finite-time consensus algorithms of leader-follower higher-order multi-agent systems with uncertain nonlinearities, Journal of the Franklin Institute 357(16): 11939-11952.
  • [21] Li, J., Yuan, L., Chai, T. and Lewis, F.L. (2022a). Consensus of nonlinear multiagent systems with uncertainties using reinforcement learning based sliding mode control, IEEE Transactions on Circuits and Systems I: Regular Papers 70(1): 424-434.
  • [22] Li, J. (2013). Fault tolerant consensus of multi-agent systems with linear dynamics, Mathematical Problems in Engineering 2013(1): 465-671.
  • [23] Li, W., Niu, Y. and Cao, Z. (2022b). Event-triggered sliding mode control for multi-agent systems subject to channel fading, International Journal of Systems Science 53(6): 1233-1244.
  • [24] Li, X., Dong, X., Li, Q. and Ren, Z. (2019). Event-triggered time-varying formation control for general linear multi-agent systems, Journal of the Franklin Institute 356(17): 10179-10195.
  • [25] Li, Z., Yan, J., Yu, W. and Qiu, J. (2020c). Event-triggered control for a class of nonlinear multiagent systems with directed graph, IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(11): 6986-6993.
  • [26] Liu, C., Jiang, B., Zhang, K. and Patton, R.J. (2021). Distributed fault-tolerant consensus tracking control of multi-agent systems under fixed and switching topologies, IEEE Transactions on Circuits and Systems I: Regular Papers 68(4): 1646-1658.
  • [27] Ma, L., Wang, Z. and Lam, H.-K. (2016). Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations, IEEE Transactions on Automatic Control 62(7): 3524-3531.
  • [28] Menon, P.P. and Edwards, C. (2013). Robust fault estimation using relative information in linear multi-agent networks, IEEE Transactions on Automatic Control 59(2): 477-482.
  • [29] Parsa, P. and Akbarzadeh-T, M.-R. (2020). Combining consensus and tracking errors in sliding mode control of high order uncertain stochastic multi-agent systems, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1-8.
  • [30] Peng, C., Zhang, A. and Li, J. (2021). Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties, International Journal of Applied Mathematics and Computer Science 31(4): 635-645, DOI: 10.34768/amcs-2021-0044.
  • [31] Pham, T.V., Nguyen, Q.T., Messai, N. and Manamanni, N. (2020). Fault-tolerant tracking control for heterogeneous multi-agent systems, 2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island, South Korea, pp. 2696-2701.
  • [32] Salmanpour, Y., Arefi, M.M., Khayatian, A. and Yin, S. (2023). Observer-based fault-tolerant finite-time control of nonlinear multiagent systems, IEEE Transactions on Neural Networks and Learning Systems 34(6): 1-10.
  • [33] Siavash, M., Majd, V. and Tahmasebi, M. (2019). Finite-time consensus control of Euler-Lagrange multi-agent systems in the presence of stochastic disturbances and actuator faults, Journal of Electrical and Computer Engineering Innovations 7(2): 163-172.
  • [34] Wang, J., Fang, Y.-M., Li, J.-X. and Li, K.-D. (2022). Fixed-time sliding mode fault-tolerant consensus control for second-order multi-agent system with actuator fault, 2022 41st Chinese Control Conference (CCC), Hefei, China, pp. 4153-4158.
  • [35] Wang, Y., Cheng, L., Hou, Z.-G., Tan, M. and Wang, M. (2014). Containment control of multi-agent systems in a noisy communication environment, Automatica 50(7): 1922-1928.
  • [36] Xu, C., Xu, H., Guan, Z.-H. and Ge, Y. (2022). Observer-based dynamic event-triggered semiglobal bipartite consensus of linear multi-agent systems with input saturation, IEEE Transactions on Cybernetics 53(5): 3139-3152.
  • [37] Xu, M., Yang, P. and Shu, Q. (2018). Consistent sliding mode fault tolerant control for second order multi-agent systems, 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, pp. 1-6.
  • [38] Yang, P., Hu, X., Wang, Z. and Zhang, Z. (2022). Sliding mode fault tolerant consensus control for multi-agent systems based on super-twisting observer, Journal of Systems Engineering and Electronics 33(6): 1309-1319.
  • [39] Yang, X.-R., Liu, G.-P., Zhang, Z. and Lyu, J. (2019). Consensus analysis and control for rectangular singular multi-agent systems, 2019 Chinese Automation Congress (CAC), Hangzhou, China, pp. 3632-3635.
  • [40] Yao, D., Li, H. and Shi, Y. (2022). Adaptive event-triggered sliding-mode control for consensus tracking of nonlinear multiagent systems with unknown perturbations, IEEE Transactions on Cybernetics 53(4): 2672-2684.
  • [41] Yorgancioğlu, F. and Redif, S. (2019). Fast nonsingular terminal decoupled sliding-mode control utilizing time-varying sliding surfaces, Turkish Journal of Electrical Engineering and Computer Sciences 27(3): 1922-1937.
  • [42] Yu, Z., Liu, C.,Wang, X. and Ren, X. (2023). Distributed output estimation error observer-based adaptive fault-tolerant consensus tracking control of multi-agent systems, International Journal of Adaptive Control and Signal Processing 37(4): 1030-1048.
  • [43] Yu, Z., Liu, Z., Zhang, Y., Qu, Y. and Su, C.-Y. (2019). Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles, IEEE Transactions on Neural Networks and Learning Systems 31(6): 2077-2091.
  • [44] Zhai, M., Sun, Q., Wang, R., Wang, B., Hu, J. and Zhang, H. (2023). Distributed multiagent-based event-driven fault-tolerant control of islanded microgrids, IEEE Transactions on Cybernetics 53(11): 7251-7262.
  • [45] Zhang, Q., Wang, J., Yang, Z. and Chen, Z. (2019). High gain feedback robust control for flocking of multi-agents system, Transactions of the Institute of Measurement and Control 41(13): 3769-3776.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28bfa4aa-5e16-41b9-808d-fe449f75664e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.