PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lorentzian Operator for Angular Source Localization with Large Array

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Source localization problem consists of an ensemble of techniques that are used to obtain spatial information of present radiation in given medium of propagation, with a constraint of the antenna geometry and the characteristics of radiating sources. This condition gives multitude of cases to study, hence several methods were proposed in the literature. In this paper, a new algorithm for estimating the Direction of Arrival (DoA) of narrowband and far eld punctual sources is introduced. By exploiting the spectrum of covariance matrix of received data, the Lorentzian function on spectral matrix to lter the eigenvalues is applied. This ltering process eliminates the eigenvalues belonging to signal subspace. Parameters of Lorentz function are adjusted using rst and second statistics of eigenvalues. The algorithm requires the knowledge of minimum eigenvalue and is performing when the dimension of antenna is relatively large which is conrmed by several Monte Carlo simulations.
Słowa kluczowe
Rocznik
Tom
Strony
98--105
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics and Informatics, Beni Mellal, Morocco
autor
  • Department of Mathematics and Informatics, Beni Mellal, Morocco
autor
  • Greyc UMR 6072 CNRS, ENSICAEN, Caen, France
Bibliografia
  • [1] E. Xu, Z. Ding, and S. Dasgupta, „Source localization in wireless sensor networks from signal time-of-arrival measurements", IEEE Trans. Sig. Process., vol. 59, no. 6, pp. 2887-2897, 2011.
  • [2] Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-of-Arrival Estimation. Norwood, MA, USA: Artech House, 2010.
  • [3] Y.-S. Yoon, L. M. Kaplan, and J. H. McClellan, „TOPS: new DOA estimator for wideband signals", Signal Processing, IEEE Trans. Sig. Process., vol. 54, no. 6, pp. 1977-1989, 2006.
  • [4] R. Feliachi, „Spatial processing of cyclostationary interferers for phased array radio telescopes", Ph.D. thesis, Université d'Orléans, Orléans, France, 2010.
  • [5] B. Yang, F. He, J. Jin, H. Xiong, and G. Xu, „DOA estimation for attitude determination on communication satellites", Chinese J. Aeronautics, vol. 27, no. 3, pp. 670-677, 2014.
  • [6] Y.-H. Ko, Y.-J. Kim, H.-I. Yoo, W.-Y. Yang, and Y.-S. Cho, „DoA estimation with cell searching for mobile relay stations with uniform circular array", in Proc. IEEE 20th Int. Symp. Person., Indoor Mob. Radio Commun., Tokio, Japan, 2009, pp. 993-997.
  • [7] M. Jiang, J. Huang, W. Han, and F. Chu, „Research on target DOA estimation method using MIMO sonar", in Proc. 4th IEEE Conf. on Indust. Elec. Appl. ICIEA 2009, Xi'an, China, 2009, pp. 1982-1984.
  • [8] C. Shao-hua, Z. Wei, and L. Hui-bin, „Improved DOA estimation of underwater target with acoustic cross array", in Proc. IEEE 11th Int. Conf. Sig. Process. ICSP 2012, Beijing, China, 2012, vol. 3, pp. 2071-2074.
  • [9] I.-K. Rhee and H.-S. Kim, „Improved DOA estimation of correlated signals in correlated antenna noises environment", in Proc. Int. Conf. Inform. Netw. ICOIN 2013, Bangkok, Thailand, 2013, pp. 66-70.
  • [10] F. B. Gross, Smart Antennas for Wireless Communications with Matlab. New York, NY, USA: McGraw-Hill Professional, 2005.
  • [11] P. Tan, P. Wang, Y. Luo, Y. Zhang, and H. Ma, „Study of 2D DOA estimation for uniform circular array in wireless location system", Int. J. Comp. Netw. Inform. Secur. (IJCNIS), vol. 2, no. 2, pp. 54-60, 2010.
  • [12] L. Liu, Q. Ji, and Y. Jiang, „Improved Fast DOA Estimation Based on Propagator Method", in Proc. APSIPA Ann. Summit and Conf. APSIPA ASC 2011, Xi'an, China, 2011.
  • [13] Y.-H. Chen and Y.-S. Lin, „Fourth-order cumulant matrices for DOA estimation", IEE Proc. Radar, Sonar and Navig., vol. 141, no. 3, pp. 144-148, 1994.
  • [14] R. Roy and T. Kailath, „ESPRIT-estimation of signal parameters via rotational invariance techniques", IEEE Trans. Acoust., Speech and Sig. Process., vol. 37, no. 7, pp. 984-995, 1989.
  • [15] J. Dai, W. Xu, and D. Zhao, „Real-valued DOA estimation for uniform linear array with unknown mutual coupling", Sig. Process., vol. 92, no. 9, 2012.
  • [16] X. Mestre and M.-A. Lagunas,”Modified subspace algorithms for DoA Estimation with large arrays", IEEE Trans. Sig. Process., vol. 56, no. 2, pp. 598-614, 2008. doi: 10.1109/TSP.2007.907884.
  • [17] Y. Wang, G. Leus, and A. Pandharipande, „Direction estimation using compressive sampling array processing", in Proc. IEEE/SP 15th Worksh. on Statis. Sig. Process. SSP 2009, Cardiff, UK, 2009, pp. 626-629. doi: 10.1109/SSP.2009.5278497.
  • [18] S. A. Clough and F. X. Kneizys, „Convolution algorithm for the Lorentz function", Applied Optics, vol. 18, no. 13, pp. 2329-2333, 1979.
  • [19] V. T. Ermolaev and A. B. Gershman, „Fast algorithm for minimumnorm direction-of-arrival estimation", IEEE Trans. Sig. Process., vol. 42, no. 9, pp. 2389-2394, 1994. doi: 10.1109/78.317860.
  • [20] H. Wolkowicz and G. P. H. Styan, „Bounds for eigenvalues using traces", Linear Algebra and its Applications, vol. 29, pp. 471-506, 1980.
  • [21] H. Krim and M. Vibergÿ „Two decades of array signal processing research: the parametric approach", IEEE Sig. Process. Mag., vol. 13, no. 4, pp. 67-94, 1996.
  • [22] Y. Khmou, S. Safi, and M. Frikel, „Comparative study between several direction of arrival estimation methods", J. Telecommun. Inform. Technol., no. 1, pp. 41-48, 2014.
  • [23] R. O. Schmidt, „Multiple emitter location and signal parameter estimation", IEEE Trans. Antenn. Propag., vol. 34, no. 3, pp. 276-280, 1986.
  • [24] S. Marcos, A. Marsal, and M. Benidir, „The propagator method for source bearing estimation", Sig. Process., vol. 42, no. 2, pp. 121-138, 1995.
  • [25] P. Stoica and R. Moses, Spectral Analysis of Signals. Upper Saddle River, NY, USA: Prentice-Hall, 2005.
  • [26] J. Chen, Y. Wu, H. Cao, and H. Wang, „Fast algorithm for DOA estimation with partial covariance matrix and without eigendecomposition",J. Sig. Inform. Process., vol. 2 no. 4, pp. 266-269, 2011.
  • [27] Y. Khmou, S. Safi, and M. Frikel, „Exponential operator for bearing estimation", Int. J. Adv. Sci. Technol. (IJAST), vol. 74, pp. 1-10, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28bea487-6bcc-4021-98a0-62cc67294ea6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.