PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast image index for database management engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large-scale image repositories are challenging to perform queries based on the content of the images. The paper proposes a novel, nested-dictionary data structure for indexing image local features. The method transforms image local feature vectors into two-level hashes and builds an index of the content of the images in the database. The algorithm can be used in database management systems. We implemented it with an example image descriptor and deployed in a relational database. We performed the experiments on two image large benchmark datasets.
Rocznik
Strony
113--123
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Czestochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
  • Czestochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
  • Department of Computer Science and Automatics, University of Bielsko-Biala, Poland
  • Faculty of Management, Czestochowa University of Technology al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Information Technology Institute, University of Social Sciences, Łodź, Poland
  • Clark University, Worcester, MA 01610, USA
Bibliografia
  • [1] Agarwal, M., Maheshwari, R.: A trous gradient structure descriptor for content based image retrieval. International Journal of Multimedia Information Retrieval 1(2), 129–138 (2012)
  • [2] Ali, N., Bajwa, K.B., Sablatnig, R., Mehmood, Z.: Image retrieval by addition of spatial information based on histograms of triangular regions. Computers & Electrical Engineering 54, 539–550 (2016)
  • [3] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer vision and image understanding 110(3), 346–359 (2008)
  • [4] Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: European conference on computer vision, pp. 404–417. Springer (2006)
  • [5] Bozkaya, T., Ozsoyoglu, M.: Indexing large metric spaces for similarity search queries. ACM Transactions on Database Systems (TODS) 24(3), 361–404 (1999)
  • [6] Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21th International Conference on Very Large Data Bases, VLDB ’95, pp. 574–584. Morgan Kaufmann Publishers Inc. (1995)
  • [7] Buckland, M., Gey, F.: The relationship between recall and precision. Journal of the American society for information science 45(1), 12 (1994)
  • [8] Daniel Carlos Guimaraes Pedronette, J.A., da S. Torres, R.: A scalable re-ranking method for content-based image retrieval. Information Sciences 265(0), 91 – 104 (2014). http://dx.doi.org/10.1016/j.ins.2013.12.030
  • [9] Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Information retrieval 11(2), 77–107 (2008)
  • [10] Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)
  • [11] Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object detection by simple fuzzy classifiers generated by boosting. In: L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, J. Zurada (eds.) Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, vol. 7894, pp. 540–547. Springer Berlin Heidelberg (2013)
  • [12] Karakasis, E., Amanatiadis, A., Gasteratos, A., Chatzichristofis, S.: Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recognition Letters 55(0), 22 – 27 (2015)
  • [13] Koren, O., Hallin, C.A., Perel, N., Bendet, D.: Decision-making enhancement in a big data environment: Application of the k-means algorithm to mixed data. Journal of Artificial Intelligence and Soft Computing Research 9(4), 293–302 (2019)
  • [14] Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Information Sciences 327, 175–182 (2016)
  • [15] Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. Journal of Artificial Intelligence and Soft Computing Research 10(1), 57–69 (2020)
  • [16] Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of massive datasets. Cambridge University Press (2014)
  • [17] Lin, C.H., Chen, R.T., Chan, Y.K.: A smart content-based image retrieval system based on color and texture feature. Image and Vision Computing 27(6), 658–665 (2009)
  • [18] Lowe, D.G.: Distinctive image features from scaleinvariant keypoints. International journal of computer vision 60(2), 91–110 (2004)
  • [19] Mehmood, Z., Anwar, S.M., Ali, N., Habib, H.A., Rashid, M.: A novel image retrieval based on a combination of local and global histograms of visual words. Mathematical Problems in Engineering 2016 (2016)
  • [20] Mehmood, Z., Mahmood, T., Javid, M.A.: Content-based image retrieval and semantic automatic image annotation based on the weighted average of triangular histograms using support vector machine. Applied Intelligence 48(1), 166–181 (2018)
  • [21] Memon, M.H., Li, J.P., Memon, I., Arain, Q.A.: Geo matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools and Applications 76(14), 15,377–15,411 (2017)
  • [22] Murala, S., Maheshwari, R., Balasubramanian, R.: Directional local extrema patterns: a new descriptor for content based image retrieval. International journal of multimedia information retrieval 1(3), 191– 203 (2012)
  • [23] Nobukawa, S., Nishimura, H., Yamanishi, T.: Pattern classification by spiking neural networks combining self-organized and reward-related spiketiming-dependent plasticity. Journal of Artificial Intelligence and Soft Computing Research 9(4), 283–291 (2019)
  • [24] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowledge-Based Systems 39(0), 85 – 94 (2013)
  • [25] Saadatmand-Tarzjan, M., Moghaddam, H.A.: A novel evolutionary approach for optimizing contentbased image indexing algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37(1), 139–153 (2007)
  • [26] Sumana, I.J., Islam, M.M., Zhang, D., Lu, G.: Content based image retrieval using curvelet transform. In: Multimedia Signal Processing, 2008 IEEE 10th Workshop on, pp. 11–16. IEEE (2008)
  • [27] Tao, D.: The corel database for content based image retrieval (2009)
  • [28] Terriberry, T.B., French, L.M., Helmsen, J.: Gpu accelerating speeded-up robust features. In: Proceedings of 3DPVT, vol. 8, pp. 355–362. Citeseer (2008)
  • [29] Ting, K.M.: Precision and recall. In: Encyclopedia of machine learning, pp. 781–781. Springer (2011)
  • [30] Walia, E., Pal, A.: Fusion framework for effective color image retrieval. Journal of Visual Communication and Image Representation 25(6), 1335–1348 (2014)
  • [31] Wang, C., Zhang, B., Qin, Z., Xiong, J.: Spatial weighting for bag-of-features based image retrieval. In: International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, pp. 91–100. Springer (2013)
  • [32] Zeng, S., Huang, R., Wang, H., Kang, Z.: Image retrieval using spatiograms of colors quantized by gaussian mixture models. Neurocomputing 171, 673–684 (2016)
  • [33] Zhang, N.: Computing optimised parallel speededup robust features (p-surf) on multi-core processors. International journal of parallel programming 38(2), 138–158 (2010)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28bb5c89-41c5-4f37-811d-2afdeffc8a58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.