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Abstract

Large-scale image repositories are challenging to perform queries based on the content
of the images. The paper proposes a novel, nested-dictionary data structure for indexing
image local features. The method transforms image local feature vectors into two-level
hashes and builds an index of the content of the images in the database. The algorithm
can be used in database management systems. We implemented it with an example image
descriptor and deployed in a relational database. We performed the experiments on two
image large benchmark datasets.
Keywords: image descriptors, content-based image retrieval, image indexing

1 Introduction

In the process of image retrieval, users search
through databases which consist of thousands, even
millions of images. The emergence of content-
based image retrieval (CBIR) in the 1990s accel-
erated extensive research in this area. Generally,
CBIR consists in searching for images similar to
the query image (or images of a certain class)
[8, 11, 12, 14, 15, 24]. The similarity of images
is evaluated not by some human description, but by
automatically computed image features. In order to
retrieve similar images, important query image fea-
tures are extracted and then, they are matched with

those stored in the image database. Identifying fea-
tures and objects in images is still a challenge as
the same objects and scenes can be viewed under
different imaging conditions.

In the paper, we propose a system for fast image
retrieval based on the nested dictionary of hashes
generated from local image features. The method
for creating a database index proposed in the paper
uses image local features. We use as an example the
SURF descriptors to generate a nested dictionary of
hashes.

There does not exist a technology for fast and
efficient retrieval of images based on their con-
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tent in existing relational database management sys-
tems. Standard SQL does not contain commands
for handling multimedia, large text objects, and spa-
tial data. The algorithm proposed in the paper can
be implemented in any modern database manage-
ment system. We implemented the proposed algo-
rithm and performed experiments in Microsoft SQL
Server.

Through this research, we highlight the follow-
ing features and contributions of the proposed algo-
rithm.

– We present a novel fast database index for
database image retrieval.

– Our work provides new insights, showing that
the two-level hash-based index provides sub-
stantial reduction in the number of vector com-
parisons needed to retrieve images.

– The method can use nearly any kind of visual de-
scriptors – hand-crafted or trained by deep learn-
ing.

– The proposed system is fast and can be used
in various relational or non-relational database
management systems.

The remainder of the paper is organised as follows.
In Section 2, we discuss previously selected works
and the SURF image descriptor used as an exam-
ple. The nested dictionary-based method proposed
in the paper is presented in Section 3. Experiments
on two large well-known image datasets, showing
accuracy and a comparison with the state-of-the-art
methods, are shown in Section 4. Finally, conclu-
sions and discussions of the paper are presented in
Section 5.

2 Related Work

The proposed method has a similar purpose
to the locality-sensitive hashing family [16] but
works differently. Other existing solutions such as
vantage-point trees (or MVP trees) are based on
vantage points [5, 6]. These solutions divide the
indexed set of vectors by analyzing distances be-
tween data vectors. Each tree node includes a spe-
cific multidimensional area of the dataset. The tree
root covers the entire area, while its children (child
nodes) divide this area into smaller areas. For each

node of the tree, n points that are very far apart from
each other are selected, around which the points are
grouped.

We propose a different approach which does not
rely on the tree structure. It is instead a structure
of the table with access to data through the index.
Grouping the indexed data vectors is not done di-
rectly by comparing their mutual distances, but by
separately assigning a hash code for each of the
data vectors. The hash code is created on the ba-
sis of a normalized data vector and encodes the dif-
ferences between its parts. The groups are created
automatically based on common hash codes. A sin-
gle hash code is a 32-bit integer used to quickly ad-
dress nodes containing data. The distance between
points is included but in a different way. Points
which distance indicates that they can be located on
the border of several nodes are included in the addi-
tional sub-hash code of the second row, which at the
same time refers directly to the main-hash code of
the main index. Thus, our approach relates some-
how to the vantage-point trees (or MVP); however,
it works differently.

As an example image descriptor, we use
Speeded-Up Robust Features (SURF) to detect and
describe local features of an image [4]. SURF is
an improved version of SIFT (Scale-invariant fea-
ture transform) [18]. It is faster and provides sim-
ilar functionality. The SURF keypoints are com-
posed of two vectors. The first one provides the
following information: position (x,y), scale (de-
tected scale), response (response of the detected
feature, strength), orientation (orientation, mea-
sured anti-clockwise from +ve x-axis), laplacian
(sign of laplacian). The second one is a descriptor
which contains 64 numbers. An important advan-
tage of SURF is that it generates less data then SIFT
(SIFT has longer 128-element descriptors), which
speeds-up further processing. The method has also
a parallel implementations [28, 33], thus it gener-
ates the results much faster. The algorithm consists
of four main stages [3]:

1. Computing Integral Images,

2. Fast-Hessian Detector:

– The Hessian,

– Constructing the Scale-Space,

– Accurate Interest Point Localization,
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tent in existing relational database management sys-
tems. Standard SQL does not contain commands
for handling multimedia, large text objects, and spa-
tial data. The algorithm proposed in the paper can
be implemented in any modern database manage-
ment system. We implemented the proposed algo-
rithm and performed experiments in Microsoft SQL
Server.

Through this research, we highlight the follow-
ing features and contributions of the proposed algo-
rithm.

– We present a novel fast database index for
database image retrieval.

– Our work provides new insights, showing that
the two-level hash-based index provides sub-
stantial reduction in the number of vector com-
parisons needed to retrieve images.

– The method can use nearly any kind of visual de-
scriptors – hand-crafted or trained by deep learn-
ing.

– The proposed system is fast and can be used
in various relational or non-relational database
management systems.

The remainder of the paper is organised as follows.
In Section 2, we discuss previously selected works
and the SURF image descriptor used as an exam-
ple. The nested dictionary-based method proposed
in the paper is presented in Section 3. Experiments
on two large well-known image datasets, showing
accuracy and a comparison with the state-of-the-art
methods, are shown in Section 4. Finally, conclu-
sions and discussions of the paper are presented in
Section 5.

2 Related Work

The proposed method has a similar purpose
to the locality-sensitive hashing family [16] but
works differently. Other existing solutions such as
vantage-point trees (or MVP trees) are based on
vantage points [5, 6]. These solutions divide the
indexed set of vectors by analyzing distances be-
tween data vectors. Each tree node includes a spe-
cific multidimensional area of the dataset. The tree
root covers the entire area, while its children (child
nodes) divide this area into smaller areas. For each

node of the tree, n points that are very far apart from
each other are selected, around which the points are
grouped.

We propose a different approach which does not
rely on the tree structure. It is instead a structure
of the table with access to data through the index.
Grouping the indexed data vectors is not done di-
rectly by comparing their mutual distances, but by
separately assigning a hash code for each of the
data vectors. The hash code is created on the ba-
sis of a normalized data vector and encodes the dif-
ferences between its parts. The groups are created
automatically based on common hash codes. A sin-
gle hash code is a 32-bit integer used to quickly ad-
dress nodes containing data. The distance between
points is included but in a different way. Points
which distance indicates that they can be located on
the border of several nodes are included in the addi-
tional sub-hash code of the second row, which at the
same time refers directly to the main-hash code of
the main index. Thus, our approach relates some-
how to the vantage-point trees (or MVP); however,
it works differently.

As an example image descriptor, we use
Speeded-Up Robust Features (SURF) to detect and
describe local features of an image [4]. SURF is
an improved version of SIFT (Scale-invariant fea-
ture transform) [18]. It is faster and provides sim-
ilar functionality. The SURF keypoints are com-
posed of two vectors. The first one provides the
following information: position (x,y), scale (de-
tected scale), response (response of the detected
feature, strength), orientation (orientation, mea-
sured anti-clockwise from +ve x-axis), laplacian
(sign of laplacian). The second one is a descriptor
which contains 64 numbers. An important advan-
tage of SURF is that it generates less data then SIFT
(SIFT has longer 128-element descriptors), which
speeds-up further processing. The method has also
a parallel implementations [28, 33], thus it gener-
ates the results much faster. The algorithm consists
of four main stages [3]:

1. Computing Integral Images,

2. Fast-Hessian Detector:

– The Hessian,

– Constructing the Scale-Space,

– Accurate Interest Point Localization,
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3. Interest Point Descriptor:

– Orientation Assignment,

– Descriptor Components,

4. Generating vectors describing the interest
points.

The SURF keypoints are resistant to change of scale
and rotation, which can be useful when objects in
the image rotate or change scale. Naturally, such
immunity is limited; if we change the point of view
entirely, the corresponding keypoints will not be de-
tected. In the literature, there are other local image
features detectors and descriptors, hand-crafted or
deep-learned ones. The presented indexing method
can use various local descriptors.

3 Proposed Fast Image Database
Index

In this Section, we present a novel, fast two-
level image index. The main problem in comparing
images by almost any kind of their feature descrip-
tors is the computational complexity. The num-
ber of long vector comparisons needed to check the
image similarity is often intractable in near real-
time. For example, every SURF keypoint descrip-
tor is a 64-element vector. For a medium size,
e.g. 1200 × 720 image, SURF can generate ap-
proximately three thousand keypoints, and each of
them is described by a 64-element vector. If our
dataset has thousands or millions of images, com-
paring them is time-consuming, and in the case of
image retrieval, it is usually unusable because of the
long query executions. In the paper, we present a
method for reducing the number of descriptor com-
parisons. The primary purpose of the presented ap-
proach is to speed up image retrieval. To this end,
we create a dictionary, which allows searching sim-
ilar and corresponding descriptors fast. Such a dic-
tionary can be used as a new data type in any SQL
database. The method can use nearly any kind of
visual descriptors – hand-crafted or trained by deep
learning. We implemented the SURF descriptors as
an example, thus in the rest of the paper, we de-
scribe the method using this example.

3.1 Hash Calculation

In the first step, an image descriptor algorithm
(SURF in our case) computes a list of keypoints
for each image in the dataset. Each keypoint has
a descriptor, which is used to calculate descrip-
tor hashes. For each image keypoint, we calculate
two 32-bit integer hashes I1 and I2. The keypoint
descriptor is vector A with elements A j ∈ [−1;1].
Based on A, we calculate vector B elements, by the
following formula

B j =
3

∑
k=0

A2
16 j+k,

where j = 0,1, . . . ,15.

Figure 1. Visual representation of the hash
calculation algorithm from the SURF descriptor

(see Section 3.1) and the index structure (see
Section 3.2).

In the next step we calculate bmax, which is the max-
imal value of vector B elements

bmax = max
{

B j
}

j∈{0...15}
.

any kind of visual descriptors – hand-crafted or
trained by deep learning. We implemented the
SURF descriptors as an example, thus in the rest
of the paper, we describe the method using this
example.

3.1 Hash Calculation

In the first step, an image descriptor algorithm
(SURF in our case) computes a list of keypoints
for each image in the dataset. Each keypoint has
a descriptor, which is used to calculate descrip-
tor hashes. For each image keypoint, we calcu-
late two 32-bit integer hashes I1 and I2. The
keypoint descriptor is vector A with elements
Aj ∈ [−1; 1]. Based on A, we calculate vector B
elements, by the following formula

Bj =
3∑

k=0

A2
16j+k,

where j = 0, 1, . . . , 15. In the next step we calcu-
late bmax, which is the maximal value of vector
B elements

bmax = max {Bj}
j∈{0...15}

.

Based on bmax we normalize values of elements
of B within the range [0; 4). We calculate vector
C

Cj =
aBj

bmax
,

where a is a constant of some value that ap-
proaches asymptotically 4. In the next step, the
elements of vector D1 are calculated by the floor
function in order to obtain integer values of C el-
ements D1j = �Cj�. Then, we fitD1 (a vector of
sixteen 2-bit numbers) into 32-bit integer. Each
value is described by 2 bits in the range [0:3], and
computed by I1 =

∑15
j=0D1j ∗ 4j . The previous

main hash -> int32 -> bit groups[16]

sub-hash -> int32 -> bit groups[16]

keypoint descriptor

keypoint descriptor

keypoint descriptor

sub-hash -> int32 -> bit groups[16]

keypoint descriptor

main hash -> int32 -> bit groups[16]

sub-hash -> int32 -> bit groups[16]

keypoint descriptor

Figure 1: Visual representation of the hash cal-
culation algorithm from the SURF descriptor
(see Section 3.1) and the index structure (see
Section 3.2).
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Based on bmax we normalize values of elements of
B within the range [0;4). We calculate vector C

Cj =
aB j

bmax
,

where a is a constant of some value that approaches
asymptotically 4. In the next step, the elements
of vector D1 are calculated by the floor function
in order to obtain integer values of C elements
D1 j = ⌊Cj⌋. Then, we fit D1 (a vector of sixteen
2-bit numbers) into 32-bit integer. Each value is
described by 2 bits in the range [0:3], and com-
puted by I1 = ∑15

j=0 D1 j ∗ 4 j. The previous steps
computed the first hash. It is basically a form of
an index for a given keypoint descriptor. Now, we
calculate the sub-hash (or sub-index), which allows
differentiating values positioned in near the bound-
ary. By removing their fractional part we would
loss this information. The second hash prevents
such loss. Let us calculate vector T, which contains
only the fractional part of the elements of vector C:
Tj =Cj −D1 j. This vector allows determining vec-
tor D2 by

D2 j =




D1 j −1 if D1 j > 0 and Tj < 0.3
D11 +1 if Tj > 0.6 and D1 j < 1
D1 j otherwise

Having D2 vector, we can calculate the sub-hash
I2=∑15

j=0 D2 j∗4 j. Finally, we have a pair of hashes
(I1, I2) for each descriptor. The main hash and
the sub-hash allow to create a nested dictionary de-
scribed in the next subsection, which significantly
reduces the number of needed descriptor compar-
isons.

3.2 Building Dictionary

After calculating hashes (I1, I2), the image in-
dex is created. This step is presented in the form of
pseudo-code in Algorithm 1. The index has a struc-
ture of a nested dictionary. The regular dictionary
is a list of key-value pairs, where the key is unique.
Both keys and values can be of any type. Gener-
ally, a nested dictionary is a dictionary with another
dictionary nested as value (see Figure 2).

In the first step, we initialize (create) a new
nested dictionary for each image. Then, we iterate
through ListO f Hashes and ListO f Desc simultane-
ously. If our Index does not contain a key equal

to I1, then we create a new key-value pair with it.
In the next step, we check another condition – if
the sub-dictionary Index[I1] does not contain I2 a
new key-value pair in the sub-dictionary is created
with the key as I2. Next, in the sub-dictionary value
Index[I1][I2], a new keypoint descriptor is added.
The above steps are repeated for every keypoint de-
scriptor.

Algorithm 1. Index creation algorithm.

Figure 2. Proposed nested dictionary structure.

The created index structure is presented in Figure 1
(right side). As can be seen, the main hash con-
tains many sub-hashes, and these sub-hashes are
composed of a list of keypoint descriptors. Both
hashes I1 and I2 are composed of 16-bit groups,

steps computed the first hash. It is basically a
form of an index for a given keypoint descriptor.
Now, we calculate the sub-hash (or sub-index),
which allows differentiating values positioned in
near the boundary. By removing their fractional
part we would loss this information. The second
hash prevents such loss. Let us calculate vec-
tor T, which contains only the fractional part of
the elements of vector C: Tj = Cj −D1j . This
vector allows determining vector D2 by

D2j =




D1j − 1 if D1j > 0 and Tj < 0.3

D11 + 1 if Tj > 0.6 and D1j < 1

D1j otherwise

Having D2 vector, we can calculate the sub-
hash I2 =

∑15
j=0D2j ∗ 4j . Finally, we have a

pair of hashes (I1, I2) for each descriptor. The
main hash and the sub-hash allow to create a
nested dictionary described in the next subsec-
tion, which significantly reduces the number of
needed descriptor comparisons.

3.2 Building Dictionary

After calculating hashes (I1, I2), the image in-
dex is created. This step is presented in the form
of pseudo-code in Alg. 1. The index has a struc-
ture of a nested dictionary. The regular dictio-
nary is a list of key-value pairs, where the key
is unique. Both keys and values can be of any
type. Generally, a nested dictionary is a dictio-
nary with another dictionary nested as value (see
Fig. 2).

In the first step, we initialize (create) a new
nested dictionary for each image. Then, we it-
erate through ListOfHashes and ListOfDesc
simultaneously. If our Index does not contain a
key equal to I1, then we create a new key-value
pair with it. In the next step, we check another

condition – if the sub-dictionary Index[I1] does
not contain I2 a new key-value pair in the sub-
dictionary is created with the key as I2. Next,
in the sub-dictionary value Index[I1][I2], a new
keypoint descriptor is added. The above steps
are repeated for every keypoint descriptor.

INPUT: ListOfHashes - list of hashes,
each element contains a pair of hashes
(I1 and I2), ListOfDesc - list of
keypoint descriptors

OUTPUT: Index - image index in the
form of the nested dictionary

Create a new dictionary Index containing
a list of key-value elements, where the
key is integer type and the value is a
sub-dictionary composed of sub-hash
and a list of keypoints (see Fig. 2).

foreach I1, I2 ∈ ListOfHashes and
Desc ∈ ListOfDesc do

if Index not contains key I1 then
Add new key-value pair where key
is I1 and value is a new
sub-dictionary,

end
if Index[I1] not contains key I2 then

Add new key-value pair to the
sub-dictionary(Index[I1]) where
key is I2 and value is a new list
of keypoint descriptors,

end
For Index[I1][I2] add new keypoint
descriptor Desc.

end
Algorithm 1: Index creation algorithm.

The created index structure is presented in Fig.
1 (right side). As can be seen, the main hash con-
tains many sub-hashes, and these sub-hashes are
composed of a list of keypoint descriptors. Both

5
Figure 2: Proposed nested dictionary structure.

hashes I1 and I2 are composed of 16-bit groups,
each group contains 2 bits, which allows using
32-bit integers. The significant advantage of this
solution is the application of a dictionary and in-
tegers as keys. In most modern languages such
as C#, Java, etc., Dictionary (C#) or HashMap
(Java equivalent of the dictionary) data types al-
low searching elements by their keys fast. More-
over, if the key type is a value type (primitive)
such as, e.g. integer, the search is even faster.
Hashes can also be used to image clustering [13]
or image classification [23].

3.3 Executing Query

In a content-based image retrieval system, we
can distinguish two steps. The first step is gener-
ally an indexation stage where we create a math-
ematical representation of the images. The sec-
ond step is executing the query, where we com-
pare the query image with the previously in-
dexed images and retrieve similar ones.

In the presented method, for a given query
image the steps presented in Sections 3.1 and 3.2
are executed. When we obtain index value for
the query image, we can compare it with other
previously indexed images in the dataset. The
entire process of the query execution is presented
in the form of pseudo-code in Alg. 2.

The algorithm takes query images, distance
threshold and list of indexed images as input
parameters, and retrieved images as the out-

put. In the first step, we search over every key
(main hash) in the query image. If the hashes
(keys) are the same, we move on to search in the
sub-index and compare sub-hashes in the sub-
dictionaries. The crucial aspect of this stage
is the comparison using the bitwise XOR op-
erator. We compare sub-hashes I2 and check
if the value of this operation is less then 16,
which means that only the four last bits differ
and the sub-hashes are equal. The number of in-
significant bits was determined empirically. The
presented procedure allows for obtaining a sig-
nificantly smaller number of comparisons than
in the case of comparing every keypoint in the
query image to every keypoint in the indexed
image database. Next, we compare the remained
(narrowed by hashes) descriptors in both indexes
by calculating the Euclidean distance. In the
next step, we sum up the distances and compare
it with the threshold provided as input. If a dis-
tance is less or equal then threshold we assume
that the image is similar to the query image.
The previously described steps are repeated for
all the indexed images. In the last step, a list of
similar images is returned.

The presented algorithm was implemented for
experimental purposes in .NET Framework and
C# language, and deployed to MS SQL Server
as a DLL library with the proposed new type
two-factor index.

4 Experimental Results

The experiments were carried out in the pro-
posed method implemented according to the
description in Section 3, deployed in the MS
SQL Server database. We used two well-
known image datasets to check the accuracy and
speed, namely the PASCAL Object Recognition

6
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Based on bmax we normalize values of elements of
B within the range [0;4). We calculate vector C

Cj =
aB j

bmax
,

where a is a constant of some value that approaches
asymptotically 4. In the next step, the elements
of vector D1 are calculated by the floor function
in order to obtain integer values of C elements
D1 j = ⌊Cj⌋. Then, we fit D1 (a vector of sixteen
2-bit numbers) into 32-bit integer. Each value is
described by 2 bits in the range [0:3], and com-
puted by I1 = ∑15

j=0 D1 j ∗ 4 j. The previous steps
computed the first hash. It is basically a form of
an index for a given keypoint descriptor. Now, we
calculate the sub-hash (or sub-index), which allows
differentiating values positioned in near the bound-
ary. By removing their fractional part we would
loss this information. The second hash prevents
such loss. Let us calculate vector T, which contains
only the fractional part of the elements of vector C:
Tj =Cj −D1 j. This vector allows determining vec-
tor D2 by

D2 j =




D1 j −1 if D1 j > 0 and Tj < 0.3
D11 +1 if Tj > 0.6 and D1 j < 1
D1 j otherwise

Having D2 vector, we can calculate the sub-hash
I2=∑15

j=0 D2 j∗4 j. Finally, we have a pair of hashes
(I1, I2) for each descriptor. The main hash and
the sub-hash allow to create a nested dictionary de-
scribed in the next subsection, which significantly
reduces the number of needed descriptor compar-
isons.

3.2 Building Dictionary

After calculating hashes (I1, I2), the image in-
dex is created. This step is presented in the form of
pseudo-code in Algorithm 1. The index has a struc-
ture of a nested dictionary. The regular dictionary
is a list of key-value pairs, where the key is unique.
Both keys and values can be of any type. Gener-
ally, a nested dictionary is a dictionary with another
dictionary nested as value (see Figure 2).

In the first step, we initialize (create) a new
nested dictionary for each image. Then, we iterate
through ListO f Hashes and ListO f Desc simultane-
ously. If our Index does not contain a key equal

to I1, then we create a new key-value pair with it.
In the next step, we check another condition – if
the sub-dictionary Index[I1] does not contain I2 a
new key-value pair in the sub-dictionary is created
with the key as I2. Next, in the sub-dictionary value
Index[I1][I2], a new keypoint descriptor is added.
The above steps are repeated for every keypoint de-
scriptor.

Algorithm 1. Index creation algorithm.

Figure 2. Proposed nested dictionary structure.

The created index structure is presented in Figure 1
(right side). As can be seen, the main hash con-
tains many sub-hashes, and these sub-hashes are
composed of a list of keypoint descriptors. Both
hashes I1 and I2 are composed of 16-bit groups,
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each group contains 2 bits, which allows using 32-
bit integers. The significant advantage of this solu-
tion is the application of a dictionary and integers as
keys. In most modern languages such as C#, Java,
etc., Dictionary (C#) or HashMap (Java equivalent
of the dictionary) data types allow searching ele-
ments by their keys fast. Moreover, if the key type
is a value type (primitive) such as, e.g. integer, the
search is even faster. Hashes can also be used to
image clustering [13] or image classification [23].

3.3 Executing Query

In a content-based image retrieval system, we
can distinguish two steps. The first step is generally
an indexation stage where we create a mathemati-
cal representation of the images. The second step is
executing the query, where we compare the query
image with the previously indexed images and re-
trieve similar ones.

In the presented method, for a given query im-
age the steps presented in Sections 3.1 and 3.2 are
executed. When we obtain index value for the query
image, we can compare it with other previously in-
dexed images in the dataset. The entire process
of the query execution is presented in the form of
pseudo-code in Algorithm 2.

The algorithm takes query images, distance
threshold and list of indexed images as input pa-
rameters, and retrieved images as the output. In
the first step, we search over every key (main hash)
in the query image. If the hashes (keys) are the
same, we move on to search in the sub-index and
compare sub-hashes in the sub-dictionaries. The
crucial aspect of this stage is the comparison us-
ing the bitwise XOR operator. We compare sub-
hashes I2 and check if the value of this operation
is less then 16, which means that only the four
last bits differ and the sub-hashes are equal. The
number of insignificant bits was determined empir-
ically. The presented procedure allows for obtain-
ing a significantly smaller number of comparisons
than in the case of comparing every keypoint in the
query image to every keypoint in the indexed im-
age database. Next, we compare the remained (nar-
rowed by hashes) descriptors in both indexes by cal-
culating the Euclidean distance. In the next step, we
sum up the distances and compare it with the thresh-
old provided as input. If a distance is less or equal
then threshold we assume that the image is similar

to the query image. The previously described steps
are repeated for all the indexed images. In the last
step, a list of similar images is returned.

Algorithm 2. Query execution algorithm.

The presented algorithm was implemented for
experimental purposes in .NET Framework and C#
language, and deployed to MS SQL Server as a
DLL library with the proposed new type two-factor
index.

4 Experimental Results

The experiments were carried out in the pro-
posed method implemented according to the de-
scription in Section 3, deployed in the MS SQL
Server database. We used two well-known image
datasets to check the accuracy and speed, namely
the PASCAL Object Recognition Database Collec-
tion, Unannotated Database - 101 Object Categories
[10], and the COREL Database for Content-based
Image Retrieval [27]. We used all the classes in
the datasets, and every class was divided into two
sets of, respectively, 90 % training images and 10

INPUT: QueryImage - query image index,
threshold - distance threshold for the query image,
ListOfImages - a list of dataset images with calculated
indexes.

OUTPUT: RetrievedImages - retrieved images
foreach IndexedImage ∈ ListOfImages do
sumDistance := 0.0,
hashesMatched := 0,
foreach QiIndex ∈ QueryImage.Index do
if IndexedImage.Index contains key QiIndex.Key then
foreach QiInnerImgIndex ∈ QiIndex.V alue do
foreach
InnerImgIndex ∈ IndexedImage.Index[QiIndex.Key]
do
if (QiInnerImgIndex.Key xor
InnerImgIndex.Key) < 16 then
hashedMatched + +,
Create similairty list ListOfSimilarity
foreach QiDesc ∈ QiInnerImgIndex.V alue do
foreach IndDesc ∈ InnerImgIndex.V alue do
d := Dist(QiDesc, IndDesc) -calculate the Euclidean
distance between two descriptors,

Add new pair to similarity list where values are
distance d and hashedMatched,

end

end
Sort descending the ListOfSimilarity by the
hashedMatched,

Take only elements from ListOfSimilarity where values
of hashedMatched are greater then 4

Summarize (SimilaritySum) distance d values in
previously filtered ListOfSimilarity

end

end

end

end

end
if sumDistance <= threshold then
Add IndexedImage as similar image to the
RetrievedImages

end

end
Return RetrievedImages as a list of similar images.

Algorithm 2: Query execution algorithm.

Database Collection, Unannotated Database -
101 Object Categories [10], and the COREL
Database for Content-based Image Retrieval
[27]. We used all the classes in the datasets,
and every class was divided into two sets of, re-
spectively, 90 % training images and 10 % query
(evaluation) images. The performance of the
proposed method was evaluated with Precision
and Recall measures [7][29]. They are computed
using: DIC – a set of database images for a given
class of objects, RI – a set of retrieved images
for query, RRI(TP ) – a set of relevant retrieved
images (true positive), IRI(FP ) – irrelevant re-
trieved images (false positive), RNRI(FN) –
relevant not retrieved images (false, negative)
and IRNRI(TN) – irrelevant not retrieved im-
ages (TN). Table 1 presents relevance measures
of the retrieved images for the Pascal VOC
dataset. Due to lack of space, we present only
random results from the entire dataset. The pre-
sented results were compared with the current
state-of-the-art methods in Table 3.

Table 2 contains randomly selected exper-
imental results (multi-queries) for the Corel
dataset. We narrow the results due to lack of
space. Let us take under consideration an ex-
ample query 71(cat). All relevant images were
correctly retrieved (RRI = 180). Only 9 are im-
properly retrieved, although they are not from
the same class. The precision value for this ex-
periment is 95.2 and recall equals 100. The aver-
age precision for this dataset equals 87.8, which
is a very good result on the Pascal dataset.

In Table 3 we compared our method with some
state-of-the-art methods. Average precision
is slightly lower than the highest value ([20]).
Recall, on the other hand, is much higher than
in the case of other methods. One of the es-
sential aspects of our method is the reduction of
descriptor comparisons which is presented in Ta-
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% query (evaluation) images. The performance of
the proposed method was evaluated with Precision
and Recall measures [7, 29]. They are computed
using: DIC – a set of database images for a given
class of objects, RI – a set of retrieved images for
query, RRI(T P) – a set of relevant retrieved im-
ages (true positive), IRI(FP) – irrelevant retrieved
images (false positive), RNRI(FN) – relevant not
retrieved images (false, negative) and IRNRI(T N)
– irrelevant not retrieved images (TN). Table 1
presents relevance measures of the retrieved im-
ages for the Pascal VOC dataset. Due to lack of
space, we present only random results from the en-
tire dataset. The presented results were compared
with the current state-of-the-art methods in Table 3.

Method/Author Avg.Precis. Avg.Recall
Proposed method 0.8780 0.9361
deselaers2008 [9] 0.63 N/A

lin2009 [17] 0.7270 N/A
walia2014 [30] 0.7830 0.1566

mehmood2016 [19] 0.8421 0.1684
ali2016 [2] 0.8627 0.1725

wang2013 [31] 0.6970 0.1300
zeng2016 [32] 0.8057 0.1611

mehmood2018 [20] 0.8785 0.1737
agarwal2012 [1] 0.6020 0.4490

saadatmand2007 [25] 0.6400 0.4160
murala2012 [22] 0.6830 0.5400

sumana2008 [26] 0.7070 0.4900
memon2017 [21] 0.7500 0.5600

Table 3. Comparison of the average precision for
the proposed method with the state-of-the-art for

the Corel dataset.

Table 2 contains randomly selected experimen-
tal results (multi-queries) for the Corel dataset. We
narrow the results due to lack of space. Let us
take under consideration an example query 71(cat).
All relevant images were correctly retrieved (RRI =
180). Only 9 are improperly retrieved, although
they are not from the same class. The precision
value for this experiment is 95.2 and recall equals
100. The average precision for this dataset equals
87.8, which is a very good result on the Pascal
dataset.

In Table 3 we compared our method with
some state-of-the-art methods. Average precision is
slightly lower than the highest value ([20]). Recall,
on the other hand, is much higher than in the case of

other methods. One of the essential aspects of our
method is the reduction of descriptor comparisons
which is presented in Table 4. As can be seen in Ta-
ble 4, the reduction in the number of comparisons is
significant. We took ten images in three resolutions
and averaged the number of comparisons needed in
their case. For example, in the case of an image
of resolution 1200× 720 the reduction is over two
orders of magnitude.

5 Final Remarks

We proposed a novel database index for
content-based image retrieval. For creating the in-
dex we used a nested dictionary. By using the in-
dex, we can reduce the number of comparisons dur-
ing the retrieval process. In our implementation, it
is embedded into a relational database management
system, and it benefits from the SQL commands.
The algorithm also provides a new data type for the
database. We used Microsoft SQL Server in order
to create a CLR UDT type and a CLR Function
to implement the algorithm. The proposed solu-
tion is open to modifications and can also be ported
to other databases or extended to other types of
visual feature descriptors. The performed experi-
ments proved the accuracy and effectiveness of our
index. We observed a significant reduction in the
number of vector comparisons during the retrieval
process. We applied the SURF keypoint descrip-
tors to extract local image features as an example,
however it is possible to use nearly any local image
descriptor, hand-crafted or trained one.
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and Recall measures [7, 29]. They are computed
using: DIC – a set of database images for a given
class of objects, RI – a set of retrieved images for
query, RRI(T P) – a set of relevant retrieved im-
ages (true positive), IRI(FP) – irrelevant retrieved
images (false positive), RNRI(FN) – relevant not
retrieved images (false, negative) and IRNRI(T N)
– irrelevant not retrieved images (TN). Table 1
presents relevance measures of the retrieved im-
ages for the Pascal VOC dataset. Due to lack of
space, we present only random results from the en-
tire dataset. The presented results were compared
with the current state-of-the-art methods in Table 3.
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Table 3. Comparison of the average precision for
the proposed method with the state-of-the-art for

the Corel dataset.

Table 2 contains randomly selected experimen-
tal results (multi-queries) for the Corel dataset. We
narrow the results due to lack of space. Let us
take under consideration an example query 71(cat).
All relevant images were correctly retrieved (RRI =
180). Only 9 are improperly retrieved, although
they are not from the same class. The precision
value for this experiment is 95.2 and recall equals
100. The average precision for this dataset equals
87.8, which is a very good result on the Pascal
dataset.

In Table 3 we compared our method with
some state-of-the-art methods. Average precision is
slightly lower than the highest value ([20]). Recall,
on the other hand, is much higher than in the case of

other methods. One of the essential aspects of our
method is the reduction of descriptor comparisons
which is presented in Table 4. As can be seen in Ta-
ble 4, the reduction in the number of comparisons is
significant. We took ten images in three resolutions
and averaged the number of comparisons needed in
their case. For example, in the case of an image
of resolution 1200× 720 the reduction is over two
orders of magnitude.

5 Final Remarks

We proposed a novel database index for
content-based image retrieval. For creating the in-
dex we used a nested dictionary. By using the in-
dex, we can reduce the number of comparisons dur-
ing the retrieval process. In our implementation, it
is embedded into a relational database management
system, and it benefits from the SQL commands.
The algorithm also provides a new data type for the
database. We used Microsoft SQL Server in order
to create a CLR UDT type and a CLR Function
to implement the algorithm. The proposed solu-
tion is open to modifications and can also be ported
to other databases or extended to other types of
visual feature descriptors. The performed experi-
ments proved the accuracy and effectiveness of our
index. We observed a significant reduction in the
number of vector comparisons during the retrieval
process. We applied the SURF keypoint descrip-
tors to extract local image features as an example,
however it is possible to use nearly any local image
descriptor, hand-crafted or trained one.
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FAST IMAGE INDEX FOR . . .

Id(Class) RI DIC RRI (TP) IRI (FP) RNRI (FN) IRNRI (TN) Precision Recall Accuracy
723(watch) 205 195 174 31 21 6892 84.9 89.2 99.3
582(bonsai) 112 105 99 13 6 7000 88.4 94.3 99.7

590(wheelchair) 51 49 48 3 1 7066 94.1 98.0 99.9
599(brain) 87 81 74 13 7 7024 85.1 91.4 99.7

607(stegosaurus) 52 49 41 11 8 7058 78.8 83.7 99.7
660(stop-sign) 57 53 50 7 3 7058 87.7 94.3 99.9

671(strawberry) 30 29 28 2 1 7087 93.3 96.6 100.0
683(sunflower) 77 70 43 34 27 7014 55.8 61.4 99.1

697(tick) 45 41 37 8 4 7069 82.2 90.2 99.8
701(trilobite) 76 71 65 11 6 7036 85.5 91.5 99.8

708(umbrella) 66 62 60 6 2 7050 90.9 96.8 99.9
714(watch) 210 195 187 23 8 6900 89.0 95.9 99.6

734(water-lilly) 33 31 31 2 0 7085 93.9 100.0 100.0
1(accordion) 47 45 42 5 3 7068 89.4 93.3 99.9
506(beaver) 41 38 28 13 10 7067 68.3 73.7 99.7
514(beaver) 41 38 29 12 9 7068 70.7 76.3 99.7

536(binocular) 29 27 24 5 3 7086 82.8 88.9 99.9
548(bonsai) 113 105 96 17 9 6996 85.0 91.4 99.6

170(dalmatian) 60 55 53 7 2 7056 88.3 96.4 99.9
186(dollar-bill) 46 43 36 10 7 7065 78.3 83.7 99.8

213(dolphin) 58 54 52 6 2 7058 89.7 96.3 99.9
223(dolphin) 58 54 52 6 2 7058 89.7 96.3 99.9

340(elephant) 57 53 52 5 1 7060 91.2 98.1 99.9
406(emu) 48 44 39 9 5 7065 81.2 88.6 99.8
413(emu) 47 44 36 11 8 7063 76.6 81.8 99.7
475(ewer) 75 70 70 5 0 7043 93.3 100.0 99.9

545(flamingo) 59 55 48 11 7 7052 81.4 87.3 99.7
567(flamingo-head) 40 37 34 6 3 7075 85.0 91.9 99.9
581(flamingo-head) 40 37 33 7 4 7074 82.5 89.2 99.8

593(garfield) 30 28 24 6 4 7084 80.0 85.7 99.9
55(helicopter) 78 72 66 12 6 7034 84.6 91.7 99.7

62(ibis) 69 65 60 9 5 7044 87.0 92.3 99.8
267(ketch) 98 93 63 35 30 6990 64.3 67.7 99.1

492(Leopards) 172 162 110 62 52 6894 64.0 67.9 98.4
452(Faces-easy) 371 353 318 53 35 6712 85.7 90.1 98.8

Average 84.16 90.24 99.63

Table 1. Experiment results for the proposed method, performed on the Pascal dataset. Due to lack of
space, we present only a part of all queries from various classes, although the average precision is

calculated for all the query images in the test set.
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Id(Class) RI DIC RRI (TP) IRI (FP) RNRI (FN) IRNRI (TN) Precision Recall Accuracy
638(woman) 520 495 297 223 198 7694 57.1 60.0 95.0

460(train) 316 290 209 107 81 8015 66.1 72.1 97.8
473(train) 310 290 226 84 64 8038 72.9 77.9 98.2
488(deer) 205 190 177 28 13 8194 86.3 93.2 99.5
496(deer) 201 190 184 17 6 8205 91.5 96.8 99.7
511(deer) 204 190 177 27 13 8195 86.8 93.2 99.5
526(deer) 205 190 186 19 4 8203 90.7 97.9 99.7
530(deer) 206 190 179 27 11 8195 86.9 94.2 99.5
537(deer) 201 190 180 21 10 8201 89.6 94.7 99.6

71(cat) 189 180 180 9 0 8223 95.2 100.0 99.9
79(cat) 189 180 176 13 4 8219 93.1 97.8 99.8

95(dog) 305 290 180 125 110 7997 59.0 62.1 97.2
101(dog) 316 290 188 128 102 7994 59.5 64.8 97.3
107(dog) 314 290 186 128 104 7994 59.2 64.1 97.2

18(bus) 96 90 87 9 3 8313 90.6 96.7 99.9
26(bus) 96 90 85 11 5 8311 88.5 94.4 99.8
38(bus) 97 90 82 15 8 8307 84.5 91.1 99.7
47(bus) 93 90 86 7 4 8315 92.5 95.6 99.9
53(bus) 94 90 85 9 5 8313 90.4 94.4 99.8
66(bus) 96 90 86 10 4 8312 89.6 95.6 99.8

106(car) 427 400 375 52 25 7960 87.8 93.8 99.1
121(car) 427 400 391 36 9 7976 91.6 97.8 99.5
135(car) 435 400 383 52 17 7960 88.0 95.8 99.2
141(car) 431 400 383 48 17 7964 88.9 95.8 99.2
151(car) 431 400 387 44 13 7968 89.8 96.8 99.3
156(car) 431 400 395 36 5 7976 91.6 98.8 99.5
162(car) 419 400 387 32 13 7980 92.4 96.8 99.5

181(cards) 98 90 84 14 6 8308 85.7 93.3 99.8
187(cards) 96 90 85 11 5 8311 88.5 94.4 99.8
201(cards) 96 90 84 12 6 8310 87.5 93.3 99.8
205(cards) 94 90 86 8 4 8314 91.5 95.6 99.9
232(cards) 98 90 90 8 0 8314 91.8 100.0 99.9
236(cards) 95 90 84 11 6 8311 88.4 93.3 99.8

246(decoys) 94 90 79 15 11 8307 84.0 87.8 99.7
328(dish) 93 90 89 4 1 8318 95.7 98.9 99.9
396(dish) 94 90 87 7 3 8315 92.6 96.7 99.9
403(doll) 98 90 85 13 5 8309 86.7 94.4 99.8
Average 87.80 93.61 99.53

Table 2. Experiment results for the proposed method performed on the Corel dataset. Due to lack of space,
we present only a part of all queries from various classes, although the average precision is calculated for

all the query images in the test set.
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Id(Class) RI DIC RRI (TP) IRI (FP) RNRI (FN) IRNRI (TN) Precision Recall Accuracy
638(woman) 520 495 297 223 198 7694 57.1 60.0 95.0

460(train) 316 290 209 107 81 8015 66.1 72.1 97.8
473(train) 310 290 226 84 64 8038 72.9 77.9 98.2
488(deer) 205 190 177 28 13 8194 86.3 93.2 99.5
496(deer) 201 190 184 17 6 8205 91.5 96.8 99.7
511(deer) 204 190 177 27 13 8195 86.8 93.2 99.5
526(deer) 205 190 186 19 4 8203 90.7 97.9 99.7
530(deer) 206 190 179 27 11 8195 86.9 94.2 99.5
537(deer) 201 190 180 21 10 8201 89.6 94.7 99.6

71(cat) 189 180 180 9 0 8223 95.2 100.0 99.9
79(cat) 189 180 176 13 4 8219 93.1 97.8 99.8

95(dog) 305 290 180 125 110 7997 59.0 62.1 97.2
101(dog) 316 290 188 128 102 7994 59.5 64.8 97.3
107(dog) 314 290 186 128 104 7994 59.2 64.1 97.2

18(bus) 96 90 87 9 3 8313 90.6 96.7 99.9
26(bus) 96 90 85 11 5 8311 88.5 94.4 99.8
38(bus) 97 90 82 15 8 8307 84.5 91.1 99.7
47(bus) 93 90 86 7 4 8315 92.5 95.6 99.9
53(bus) 94 90 85 9 5 8313 90.4 94.4 99.8
66(bus) 96 90 86 10 4 8312 89.6 95.6 99.8

106(car) 427 400 375 52 25 7960 87.8 93.8 99.1
121(car) 427 400 391 36 9 7976 91.6 97.8 99.5
135(car) 435 400 383 52 17 7960 88.0 95.8 99.2
141(car) 431 400 383 48 17 7964 88.9 95.8 99.2
151(car) 431 400 387 44 13 7968 89.8 96.8 99.3
156(car) 431 400 395 36 5 7976 91.6 98.8 99.5
162(car) 419 400 387 32 13 7980 92.4 96.8 99.5

181(cards) 98 90 84 14 6 8308 85.7 93.3 99.8
187(cards) 96 90 85 11 5 8311 88.5 94.4 99.8
201(cards) 96 90 84 12 6 8310 87.5 93.3 99.8
205(cards) 94 90 86 8 4 8314 91.5 95.6 99.9
232(cards) 98 90 90 8 0 8314 91.8 100.0 99.9
236(cards) 95 90 84 11 6 8311 88.4 93.3 99.8

246(decoys) 94 90 79 15 11 8307 84.0 87.8 99.7
328(dish) 93 90 89 4 1 8318 95.7 98.9 99.9
396(dish) 94 90 87 7 3 8315 92.6 96.7 99.9
403(doll) 98 90 85 13 5 8309 86.7 94.4 99.8
Average 87.80 93.61 99.53

Table 2. Experiment results for the proposed method performed on the Corel dataset. Due to lack of space,
we present only a part of all queries from various classes, although the average precision is calculated for

all the query images in the test set.
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Figure 3. Average precision for each image class for the proposed approach performed on the Corel dataset

Image resolution
Any to any
descriptor

comparison count

Proposed index
comparison

count
4500×2600px 1.10217E+11 307,931,798
1200×720px 60,358,817,792 271,067,676
400×138px 191445728 7,160,708

Table 4. Examples of the reduction in the number of vector comparisons needed to compare images by
local descriptors with the proposed method. The number of local features depends on the image

complexity, and the numbers presented in the table are the average for the image sets.

Figure 3: Average precision for each image class
for the proposed approach performed on the
Corel dataset.

Method/Author Avg.Precis. Avg.Recall
Proposed method 0.8780 0.9361
deselaers2008 [9] 0.63 N/A

lin2009 [17] 0.7270 N/A
walia2014 [30] 0.7830 0.1566

mehmood2016 [19] 0.8421 0.1684
ali2016 [2] 0.8627 0.1725

wang2013 [31] 0.6970 0.1300
zeng2016 [32] 0.8057 0.1611

mehmood2018 [20] 0.8785 0.1737
agarwal2012 [1] 0.6020 0.4490

saadatmand2007 [25] 0.6400 0.4160
murala2012 [22] 0.6830 0.5400
sumana2008 [26] 0.7070 0.4900
memon2017 [21] 0.7500 0.5600

Table 3: Comparison of the average precision for
the proposed method with the state-of-the-art
for the Corel dataset.

ble 4. As can be seen in Table 4, the reduction
in the number of comparisons is significant. We
took ten images in three resolutions and aver-
aged the number of comparisons needed in their
case. For example, in the case of an image of
resolution 1200 × 720 the reduction is over two
orders of magnitude.

Image resolution
Any to any
descriptor

comparison count

Proposed index
comparison

count
4500 × 2600px 1.10217E+11 307,931,798
1200 × 720px 60,358,817,792 271,067,676
400 × 138px 191445728 7,160,708

Table 4: Examples of the reduction in the num-
ber of vector comparisons needed to compare
images by local descriptors with the proposed
method. The number of local features depends
on the image complexity, and the numbers pre-
sented in the table are the average for the image
sets.
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