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Abstract: Herein, the flotation behavior of fluorite and calcite was examined before and after starch 
esterification through mineral flotation experiments. Moreover, the adsorption action mechanisms on 
minerals before and after starch esterification were investigated using methods such as solution surface 
tension measurement, infrared spectroscopy, and extended Derjaguin–Landau–Verwey–Overbeek 
theory. The results showed that after starch esterification (esterified starch), there was a greater 
difference in the mineral recovery rate compared to before starch esterification (ordinary starch), with 
a better inhibition effect on calcite. The interaction between mineral surfaces and ordinary starch was 
weaker than the interaction between minerals and esterified starch. In particular, after starch 
esterification, the surface tension increased, two minerals contact angle decreased, the surface potential 
became more negative, and the difference in the mineral recovery rate was greater than before starch 
esterification. After the interaction between minerals and esterified starch, calcite particles displayed 
good dispersibility, while the cohesion between calcite particles and sodium oleate particles decreased; 
notably, the effect on fluorite was opposite. Calcite and esterified starch exhibited chemical adsorption, 
impeding the adsorption of sodium oleate onto calcite and resulting in calcite inhibition. The interaction 
between fluorite surface and esterified starch involved electrostatic adsorption, with sodium oleate 
chemically adsorbed onto the fluorite surface. Chemical adsorption proved stronger than electrostatic 
adsorption, enabling sodium oleate to capture fluorite. 
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1. Introduction 

Fluorite, a mineral abundant in fluorine, finds extensive applications in industries such as metallurgy 
and pharmaceuticals (Corpas et al.,2020). As the global economy continues to evolve and resource 
exploration deepens, the demand for fluorite is also steadily increasing, emphasizing the importance of 
its rational exploitation and utilization (Gao et al., 2021; Shang et al., 2020). Typically, most fluorite 
resources are found in association with gangue minerals, featuring varying mineral concentrations 
ranging from abundant to scarce (Zhao et al., 2020). The majority of associated fluorite deposits are 
calcite-type fluorite ore (Wang et al., 2018). Calcite shares similar surface properties with fluorite, posing 
a persistent challenge in its flotation separation within the mineral processing industry (Sun et al., 2021). 
Common inhibitors for calcite include sodium silicate, sodium hexametaphosphate, tannic acid, and 
sodium carboxymethyl cellulose (Lu et al., 2023; Feng et al., 2011). Given the environmental 
considerations in the mineral processing industry, there is a pressing need for efficient and 
environmentally friendly calcite inhibitors. 

Starch inhibitors, being natural polymer organic compounds, offer advantages such as green 
environmental protection and cost-effectiveness, and they find widespread application in mineral 
flotation and other related fields (Wang et al., 2023; Zhang et al., 2023; Dong et al., 2010). Wang (Wang, 
2023) utilized oxidized starch as an inhibitor and sodium oleate as a collector for the flotation separation 
of calcite-type fluorite ore. Research indicates that the addition of oxidized starch substantially 
decreases the electrokinetic potential of calcite, while having minimal impact on the electrokinetic 
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potential of fluorite, thereby facilitating the separation of fluorite and calcite. Wang et al. (Wang et al., 
2023) employed Al-starch as a calcite inhibitor for flotation tungsten concentrate. Experimental results 
demonstrate that Al-starch selectively adsorbs onto the oxygen sites of carbonate anions on the calcite 
surface via metal groups without interacting with the scheelite surface, consequently modifying the 
surface charge and characteristic atoms of calcite, thereby exerting inhibitory effects. 

Esterified starch falls under the category of starch inhibitors, yet there is limited literature on its 
application in the flotation separation of fluorite and calcite minerals. Therefore, this study integrates 
mineral experiments with theoretical analysis to investigate the effects of starch esterification on the 
flotation separation of fluorite and calcite in the presence of sodium oleate as a collector. The present 
work delves into the effect of citric acid esterified starch on the flotation separation of fluorite and 
calcite, marking the first exploration of its kind. It is of great significance of esterified starch for the 
flotation separation of fluorite and calcite to elucidate the inhibition mechanism. 

2.    Materials and methods 

2.1. Materials  

The fluorite and calcite samples utilized in the experiment were all sourced from Hunan Shizhuyuan 
Nonferrous Metals Co., Ltd., China, with a purity of > 95%. Hand-selected pure ore blocks of fluorite 
and calcite were used, which were crushed by hammering, picked up with tweezers to remove 
impurities, and then repeatedly rinsed with deionized water. Subsequently, they were dried in an 
electric blast constant-temperature drying oven (101-2A) at a low temperature. Then, the samples were 
ground using a three-head grinder and sieved to obtain particles with a size range of 38–74 µm. 
Following another round of low-temperature drying, they were stored in a grinding bottle for future 
use. Table 1 lists the chemical composition details. 

Table 1. Analysis results of the main chemical components of fluorite and calcite single minerals 

mineral 
Content of each major component（%） 

CaF2 CaO MgO SiO2 Al2O3 

fluorite 99.68 - 0.028 0.113 0.025 

calcite - 54.26 0.384 0.215 0.032 

 
According to the X-ray diffraction (XRD) spectrum analysis, it was observed that the diffraction 

peaks of the two mineral samples coincided with their standard diffraction peaks without obvious 
impurity peaks. This indicates that the purity of fluorite and calcite minerals was high, which could be 
considered pure minerals and met the requirements of mineral flotation tests. As the mineral crystal 
planes possess anisotropy, the experimental minerals were analyzed by XRD patterns, and the fluorite 
(111) crystal planes and calcite (104) crystal planes were the exposed surfaces with the lowest energy 
for mineral fragmentation (Gao et al., 2016). The XRD spectrum of the sample is shown in Fig. 1. 

     
Fig. 1. X-ray diffraction patterns of fluorite and calcite 
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The chemicals used in the experiments were all of analytical grade purity. Esterified starch was 
synthesized by the dry method (Ning et al., 2021; Yu, 2008). Citric acid measuring 0.6 g was accurately 
weighed and heated with a minimal amount of deionized water to aid in dissolution. Subsequently, the 
pH value was adjusted to approximately 3 using 10mol/L sodium hydroxide. A total of 2 g of corn 
starch (Hefei Jinu Biotechnology Co., Ltd., China) was weighed and thoroughly mixed with 3 mL of 
ethanol and the prepared citric acid solution. The mixture was then allowed to stand at room 
temperature for 30 min. Then, the starch mixture was placed in a drying oven and dried at 90°C for 6 h. 
After removal, it was crushed, washed with deionized water to eliminate unreacted citric acid, and 
filtered. It was then air-dried at room temperature, crushed again, and packaged. 

2.2. Flotation experiment 

The flotation test was conducted using the inflatable hanging trough flotation machine (XFC-type), 
employing a 30mL flotation cell with an adjusted speed of 1992 r/min. For single mineral flotation or 
artificial mixed mineral samples (1g fluorite + 1g calcite), 2.00 g of the ore sample (38–74 µm) was 
weighed each time and transferred to a 30mL flotation cell; deionized water was added, and the mixture 
stirred for 2 min. Starch was added, followed by pH value adjustment using a pH regulator and stirred 
for 3 min. Sodium oleate was added, stirred for 3 min, followed by manual scraping for 3 min. The 
flotation concentrate and tailings were filtered, dried, weighed, calculated, and then stored in bags for 
backup. 

2.3. Surface tension and contact angle testing 

Surface tension was measured using the ring method (Wang et al., 2021; Chen et al., 2011), employing 
the KRÜSS K100 surface tension and contact angle measuring instrument. The H&J correction method 
was used, with a sampling interval of the position step set at 0.05 mm. The contact angle measurement 
was performed based on the capillary constant of n-hexane, with a section of data from a straight rise 
selected for automatic fitting calculation in the final results. 

2.4. Zeta potential test 

The Zeta potential of the mineral surface was measured using the Bruker Brookhaven Zeta Plus 
analyzer. The mineral sample was ground to a fine −5µm size. Two hundred milligrams of the sample 
was accurately weighed and placed in a beaker. Deionized water and reagents were added to replicate 
the conditions of the flotation test. The mixture was stirred with a magnetic stirrer for 5 min, allowed to 
settle, and the supernatant was then extracted for analysis. Each sample underwent three automatic 
measurements and the average value was recorded. 

2.5. Fourier-transform infrared spectroscopy analysis 

Fourier-transform infrared (FTIR, Bruker VETEX 70) spectroscopy was used for detection. First, the 
infrared spectrum of the reagent was measured, and the mineral sample that interacted with reagent 
was then ground to −10 µm. This prepared sample was mixed with spectrally pure potassium bromide 
at a 1:150 ratio, followed by compression testing.  

2.6. Extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory  

The classic Derjaguin–Landau–Verwey–Overbeek (DLVO) theory fails to adequately elucidate the 
agglomeration behavior of particles in the presence of flotation agents. Numerous studies have 
demonstrated that particle interactions in sol dispersion systems also include interfacial polar 
interaction energy.  Consequently, EDLVO theory is required to explain the aggregation behavior of 
particles in sol systems. The total energy of particle interactions is expressed by the following equation 
(Wang et al., 2016; Ren, 2012; Vilinska and Rao, 2011; Hu et al., 1994; Hu et al., 1993). According to the 
literature records (Wang et al., 2016; Hu et al., 1994), the Hamaker constant A11 of fluorite is 7.2 × 10−20 
J; the Hamaker constant A22 of calcite is 12.4 × 10−20 J. The mineral particle size is determined to be 50 
µm, and the sodium oleate particle size is 7.5 µm. 

𝑉!"# = 𝑉" + 𝑉$ + 𝑉%&	 	(1) 
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In the formula, VED 
T  represents the total EDLVO potential energy of the interaction between particles, 

J; VE denotes the electrostatic interaction energy of the double layer, J; VW represents the van der waals 
interaction energy, J; VHA is the interfacial polar interaction energy, J; R 1 and R 2 are the radii of different 
particles, nm; H indicates the spacing between particles, nm; A is the effective Hamaker constant 
between particles in the medium, J; 𝜑  is the surface potential of the particle (represented by Zeta 
potential here, as depicted in Table 2); k is the Debye length, 0.023 nm; εa is the absolute dielectric 
constant of the dispersed medium, 6.95 × 10−10 C2/J m; h0 is the attenuation length, 1 nm; 𝑉%&(  represents 
the interaction energy constant, mJ/m 2. 

Table 2. Zeta potential of particles 

Type 
Zeta 

potential 
(mV) 

Type 
Zeta 

potential 
(mV) 

fluorite 10.14 calcite 4.48 
fluorite+ ordinary starch 7.38 calcite+ ordinary starch -14.46 
fluorite+ esterified starch 3.95 calcite+ esterified starch -16.59 

sodium oleate -17.54 sodium oleate+ ordinary starch -20.30 
- - sodium oleate+ esterified starch -23.73 

3.       Results and discussions 

3.1.    Mineral flotation test 

3.1.1. Effect of sodium oleate on the floatability of single minerals 

Fig. 2 illustrates the investigation of the effect of sodium oleate dosage on the collection ability of fluorite 
and calcite at a pH value of 7. The figure shows that at a pH value of 7, the flotation recovery rate of 
minerals increased as the sodium oleate dosage increased. Due to the Ca2+ particle density on the 
exposed surface of fluorite (111) being 12.9 µmol/m2 and calcite (104) being 8.24 µmol/m2, the 
adsorption site density on the surface of fluorite was higher than that of calcite (Gao et al., 2016), 
resulting in a higher recovery rate of fluorite. When the sodium oleate dosage was 15 mg/L, both 
fluorite and calcite achieved high recovery rates and began to stabilize. Therefore, the sodium oleate 
dosage for subsequent experiments was determined to be 15 mg/L. 

   
Fig. 2. Effect of sodium oleate on flotation recovery of fluorite and calcite 
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3.1.2. Effect of starch on the flotation performance of single minerals 

In a flotation system with 15mg/L sodium oleate, a neutral environment with a pH value of 7 was 
chosen to examine the inhibitory effect of the dosage of inhibitors on two calcium-containing minerals, 
fluorite and calcite. Figs. 3 (a) and (b) show that in a neutral environment with pH 7, the flotation 
recovery rate of fluorite slightly decreased with the increase with both types of starch dosage, the 
magnitude was not significant. The recovery rate of calcite sharply decreased and eventually tended to 
flatten out. From the comparison between Figs. 3 (a) and (b), it can be observed that when the starch 
amount reached 40 mg/L, esterified starch resulted in a recovery rate of 23.62% for calcite, and ordinary 
starch resulted in a recovery rate of 39.18% for calcite. Notably, esterified starch had a better inhibitory 
effect on calcite flotation. 

   
Fig. 3. Effect of the dosage starch on the flotation recovery rate of fluorite and calcite 

3.1.3. The effect of pulp on single mineral flotation performance in different pH environments 

A fixed sodium oleate dosage of 15 mg/L and a starch dosage of 40 mg/L were used to investigate the 
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Due to the calcite dissolution in acidic media, experiments were only conducted in environments with 
a pH value of ≥7. Figs. 4 (a) and (b) show that under acidic or alkaline conditions, the recovery rate of 
fluorite decreased, which was not conducive to the flotation recovery of fluorite. Under alkaline 
conditions, the recovery rate of calcite did not change much and remained relatively low. Comparing 
Figs. 4 (a) and (b), when pH is 7, the difference in recovery rates between fluorite and calcite is the 
greatest, with fluorite at 85.16% and calcite at 23.62%.  Hence, in the single mineral flotation test, the 
recovery rate of fluorite was most affected by the pH value of the slurry. In a neutral slurry environment, 
starch esterification facilitated a more effective separation of fluorite and calcite. 

   
Fig. 4. Effect of different pH values of pulp on the recovery of calcite and fluorite 
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3.1.4. Artificially mixed ore experiment 

When the pH value of the slurry was 7, the sodium oleate dosage was 15 mg/L, and the starch dosage 
was 40 mg/L. The separation effect of artificially mixed ore was compared, and the results are shown 
in Table 3.  

The flotation effect of artificially mixed ore showed that the fluorite grade was 68.54%, when 
ordinary starch was used as an inhibitor. The recovery rate of fluorite was 44.16%, which was a low 
result. The low recovery rate of fluorite can cause resource waste. Nevertheless, when esterified starch 
was used as an inhibitor, the fluorite grade increased to 80.90%, marking a notable increase of 12.36%, 
and the recovery rate was also enhanced. This suggests that starch esterification had a good separation 
effect on fluorite and calcite. 

Table 3. Flotation effect of artificially mixed ore before and after starch esterification / (%) 

Product 
(concentrator) Total recovery rate  Fluorite grade Fluorite recovery 

Ordinary starch 32.22 68.54 44.16 
Esterified starch 49.35 80.90 79.85 

 

3.2.    Mechanism analysis 

3.2.1. Contact angle test 

In Fig. 5 (a), it can be observed that in the absence of depressants, an increase in the amount of sodium 
oleate led to an increase in the contact angle of fluorite and calcite. This suggests that both minerals 
exhibited good floatability in sodium oleate solution. Moreover, the contact angle of fluorite was greater 
than that of calcite. In Fig. 5 (b), it is evident that at a sodium oleate concentration of 15 mg/L, the 
contact angle of the mineral surface decreased after the addition of starch compared to its state before 
the starch addition. After the interaction between starch and mineral surfaces resulted in a small change 
in the contact angle of fluorite while a large change in the contact angle of calcite. The effect of esterified 
starch on mineral contact angle was greater than that of ordinary starch on mineral contact angle.  

At an esterified starch concentration of 40 mg/L, the contact angle of calcite measured 58.56°. In 
comparison to the contact angle of minerals at a sodium oleate concentration of 15 mg/L (as shown in 
(a)), it is evident that esterified starch reduced the contact angle of calcite by 12.05°. The reduction in the 
contact angle of calcite enhances its hydrophilicity, thereby resulting in a lower recovery rate. The 
contact angle of the fluorite also decreased, but the decrease was not significant, manifested by a slight 
change in the recovery rate. These findings align with the results of mineral flotation experiments. 

   
Fig. 5. Contact angle between fluorite and calcite under different conditions 
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solution reagent solution at a concentration of 15 mg/L of sodium oleate were tested. As shown in Fig. 
6 (a), with the increase of sodium oleate concentration, the surface tension of the solution decreased. At 
a sodium oleate concentration of 15 mg/L, the surface tension measured 39.11 mN/m. As shown in Fig. 
6 (b), after adding starch, the surface tension of the original 15mg/L sodium oleate solution increased. 
With rising starch concentration, the surface tension of the solution initially decreased and then it 
tended to flatten out. Adding starch resulted in a critical micelle concentration of 40 mg/L for the mixed 
solution, with the surface tension of the esterified starch mixed solution being higher than that of 
ordinary starch solution. The introduction of –COOH in esterified starch increased the solution’s 
polarity, intermolecular attraction, and surface tension compared to the ordinary starch solution 
increased (Timothy et al., 2008). The greater the surface tension, the more unstable the bubbles become 
(Hadler and Cilliers, 2019), thus reducing bubble stability and mineral adsorption on the surface of the 
bubbles, which decreases the recovery rates of fluorite and calcite. 

     
Fig. 6. Surface tension of solutions at different concentrations 
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inhibitor with a high degree of molecular polymerization. For the convenience of research, glucose units 
of starch molecules were used for analysis. Before and after starch esterification, owing to the existence 
of free –OH at the C2, C3, and C6 positions in its molecular structure, the steric hindrance of the –OH 
group at position C6 was minimal, leading to the occurrence of a substitution reaction first (Ning et al., 
2021). 

     
Fig. 7. Effect of different environments on the surface potential of fluorite and calcite 

 
Fig. 8. Infrared spectrum before and after starch esterification 
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Fig. 9. Infrared spectra before and after the interaction between starch and fluorite 

 
Fig. 10. Infrared spectra before and after the interaction between starch and calcite 
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surface of calcite minerals. The stability of double-coordinated adsorption surpasses that of single-
coordinated adsorption (Liu et al., 2021; Mann, 1988). Esterified starch had better adsorption properties 
than ordinary starch. Therefore, esterified starch and sodium oleate would compete for adsorption on 
the calcite surface. Esterified starch was primarily chemically adsorbed on the calcite surface, with a 
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large number of polar groups on the molecular chain. Polar groups relied on hydrogen bonding to 
interact more strongly with the O atom on the mineral surface in an aqueous solution. Due to its large 
molecular size and high steric hindrance (Gao et al., 2018; Hu et al., 2012; Leeuw et al.,1998; Lin and 
Wang, 1994), esterified starch reduced sodium oleate adsorption on its surface, leading to a decreased 
recovery rate of calcite. 

3.2.5. EDLVO theory  

EDLVO calculations were performed under neutral conditions according to formula. Fig. 11 (a) 
demonstrates that in a neutral environment, before starch was added, the total potential energy between 
fluorite particles at close range was negative, indicating strong mutual attraction. But when the distance 
between mineral particles was greater than 5.3 nm, the total potential energy became positive, indicating 
that the repulsion between fluorite particles began to increase. After adding starch, the esterified starch 
lowered the total potential energy of the system to a level approaching 0, indicating weaker 
dispersibility. This could result in mineral entrainment flotation during experiments. 

  

     
Fig. 11. Changes in total potential energy between particles before and after starch action. (a) Fluorite - Fluorite; 

(b) Calcite - Calcite; (c) Fluorite - sodium oleate; (d) Calcite - sodium oleate 

Fig. 11 (b) illustrates that before starch was added, the total potential energy between calcite particles 
was negative, causing the particles to agglomerate. However, after starch was added, the total potential 
energy increased, and beyond 3.5 nm, calcite particles showed good dispersibility, with a stronger 
dispersion effect of esterified starch. The peak on the total potential energy curve between particles is 
referred to as the barrier (Xia et al., 2002). Starch molecules were adsorbed on the surface of calcite 
particles, and the total potential energy barrier of calcite increased. The distance between particles that 
were easy to condense decreased, and the hydration effect was obvious; as the distance decreased, the 
repulsive force of the hydration film intensified, leading to considerable dispersion between particles 
(Shen, 2017). 

Figs. 11 (c) and (d) show that the total potential energy between minerals and sodium oleate was 
negative before starch was added. Adding starch increased the total potential energy between sodium 
oleate particles and mineral particles, while the increase in total potential energy between sodium oleate 
and fluorite was small, resulting in a decrease in particle cohesion; however, the change was 
inconsiderable. Conversely, the total potential energy between sodium oleate and calcite substantially 
increased, causing a rapid decrease in particle cohesion and greatly reducing the recovery rate of calcite. 
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4.  Conclusions 

Mineral flotation tests indicated that both fluorite and calcite exhibited good floatability in the sodium 
oleate system. With an esterified starch dosage of 40 mg/L, the difference in recovery rate of a single 
mineral was the greatest. The acidity and alkalinity of the environment had considerably affected the 
recovery rate of fluorite, while alkaline conditions had little impact on the recovery rate of calcite. The 
mixed ore experiment demonstrated that esterified starch could improve both the grade and recovery 
rate of fluorite. 

The surface tension of the solution could be increased after adding starch inhibitors compared to 
before adding them. Esterified starch reduced the contact angle of calcite, enhanced its hydrophilicity, 
and reduced the recovery rate. The surface potential of minerals was positive before the addition of 
starch. However, the negative surface potential of calcite was small after adding esterified starch, which 
was not conducive to binding with sodium oleate anions. At this point, the surface potential of fluorite 
remained positive, facilitating the effective separation of minerals. 
After the interaction between minerals and esterified starch, calcite particles demonstrated good 
dispersibility, while the cohesion between calcite particles and sodium oleate particles decreased, while 
the effect of fluorite was opposite. Chemically adsorbed to calcite, esterified starch hindered the 
adsorption of sodium oleate and calcite, so calcite was inhibited. The interaction between the surface of 
fluorite and esterified starch involved electrostatic adsorption, while sodium oleate was chemically 
adsorbed on the surface of fluorite. Chemical adsorption was stronger than electrostatic adsorption, so 
sodium oleate could capture fluorite. 
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