PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of selective laser sintering on stress relaxation in PA12

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ selektywnego spiekania laserowego na relaksację naprężeń w PA12
Języki publikacji
EN
Abstrakty
EN
Effect of selective laser sintering printing orientation (0°, 45°, 90°) on stress relaxation in PA12 was investigated. The results were highly consistent with the Maxwell-Wiechert model, as evidenced by the average values of the fit coefficients Chi2 = 0.00004 and R2 = 0.996. By changing the printing orientation, anisotropy of rheological properties was achieved.
PL
Zbadano wpływ orientacji wydruku selektywnego spiekania laserowego (0°, 45°, 90°) na relaksację naprężeń w PA12. Uzyskano dużą zgodność wyników z modelem Maxwella-Wiecherta, o czym świadczą średnie wartości współczynników dopasowania Chi2 = 0,00004 oraz R2 = 0,996. Zmieniając orientację wydruku uzyskano anizotropię właściwości reologicznych.
Czasopismo
Rocznik
Strony
179--185
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.
Bibliografia
  • [1] Oleksy M., Budzik G., Sanocka-Zajdel. et al.: Polimery 2018, 63(7-8), 531. https://doi.org/10.14314/polimery.2018.7.7
  • [2] Kroczek K., Turek P., Mazur D. et al.: Polymers 2022, 14(8), 1526. https://doi.org/10.3390/polym14081526
  • [3] Ibrulj J., Dzaferovic E., Obucina M.: “Determination of Relaxation and Creep Modulus of Polymer Materials Obtained by 3D Printing” in “New Technologies, Development and Application III”, Springer, Cham 2020. p. 256. https://doi.org/10.1007/978-3-030-46817-0_29
  • [4] Ibrulj J., Dzaferovic E., Obucina M. et al.: Polymers 2021, 13(19), 3276. https://doi.org/10.3390/polym13193276
  • [5] Lin C.-Y., Chen Y.-C., Lin C.-H. et al.: Polymers 2022, 14(10), 2124. https://doi.org/10.3390/polym14102124
  • [6] Zheng J.H., Jin Y., Xu L. et al.: Metals 2023, 13(4), 778. https://doi.org/10.3390/met13040778
  • [7] Tüfekci K., Çakan B.G., Küçükakarsu, V.M.: Journal of Applied Polymer Science 2023, 140(39), e54463. https://doi.org/10.1002/app.54463
  • [8] Reis P.N.B., Valvez S., Ferreira J.A.M.: Procedia Structural Integrity 2022, 37, 934. https://doi.org/10.1016/j.prostr.2022.02.028
  • [9] Bochnia J., Kozior T., Szot W. et al.: 3D Printing and Additive Manufacturing 2022. https://doi.org/10.1089/3dp.2022.0215
  • [10] Szot W.: 3D Printing and Additive Manufacturing 2023. https://doi.org/10.1089/3dp.2022.0298.
  • [11] Hu R., Zhang X., Chen Y. et al.: Additive Manufacturing 2022, 50, 102583. https://doi.org/10.1016/j.addma.2021.102583
  • [12] Pascual-Francisco J.B., Susarrey-Huerta O., Farfan- Cabrera L.I. et al.: Fractal and Fractional 2023, 7(8), 568. https://doi.org/10.3390/fractalfract7080568
  • [13] Pacheco J.E.L., Bavastri C.A., Pereira J.T.: Latin American Journal of Solids and Structures 2015, 12, 420. https://doi.org/10.1590/1679-78251412
  • [14] Jayswal A., Liu J., Harris G. et al.: Polymer Engineering and Science 2023, 63(11), 3809. https://doi.org/10.1002/pen.26486
  • [15] Valvez S., Silva A.P., Reis P.N.B.: Aerospace 2022, 9(3), 124. https://doi.org/10.3390/aerospace9030124
  • [16] Bochnia J., Blasiak S.: MM Science Journal 2020, March, 3774. https://doi.org/10.17973/mmsj.2020_03_2019122
  • [17] Kozior T., Kundera C.: Polymers 2021, 13(11), 1895. https://doi.org/10.3390/polym13111895
  • [18] Bochnia J.: Procedia Engineering 2012, 39, 98. https://doi.org/10.1016/j.proeng.2012.07.013
  • [19] Bochnia J., Blasiak S.: Polymers 2020, 12(4), 830. https://doi.org/10.3390/polym12040830
  • [20] Faidallah R.F., Hanon M.M., Szakál, Z. et al.: Acta Polytechnica Hungarica 2023, 20(6), 7. https://doi.org/10.12700/aph.20.6.2023.6.1
  • [21] Ranganathan S., Kumar K.S., Gopal S. et al.: SAE Technical Papers 2020. https://doi.org/10.4271/2020-28-0411
  • [22] Kluczyński J., Śniezek L., Grzelak K. et al.: Bulletin of the Polish Academy of Sciences: Technical Sciences 2020, 68(6), 1413. https://doi.org/10.24425/bpasts.2020.135396
  • [23] Boyer R.A., Kasper F.K., English J.D. et al.: American Journal of Orthodontics and Dentofacial Orthopedics 2021, 160(5), 732. https://doi.org/10.1016/j.ajodo.2021.01.018
  • [24] Fisher T., Almeida J.H.S., Falzon B.G. et al.: Polymers 2023, 15(7), 1708. https://doi.org/10.3390/polym15071708
  • [25] Ngoc N.V., Khai N.K., Tung N.V. et al.: “A Review of the Mechanical of SLA 3D Printing Materials: Printing Orientations and Photopolymerization Technology” in “AMAS 2021: Proceedings of the International Conference on Advanced Mechanical Engineering, Automation, and Sustainable Development 2021”, Springer, Cham 2022. p. 660. https://doi.org/10.1007/978-3-030-99666-6_95
  • [26] El Magri A., Bencaid S.E., Vanaei H.R. et al.: Polymers 2022, 14(17), 3674. https://doi.org/10.3390/polym14173674
  • [27] Marsavina L., Stoia D.I.: Material Design and Processing Communications 2020, 2(1), 1. https://doi.org/10.1002/mdp2.112
  • [28] Guo X., Moudgil B.M.: KONA Powder and Particle Journal 2023, 12, 2024012. https://doi.org/10.14356/kona.2024012.
  • [29] Han W., Kong L., Xu M.: International Journal of Extreme Manufacturing 2022, 4, 042002. https://doi.org/10.1088/2631-7990/ac9096.
  • [30] https://www.eos.info/en/3d-printing-materials/plas¬tic/polyamide-pa-12-alumide (access date 15.11.2023)
  • [31] Bochnia J., Blasiak S.: Rapid Prototyping Journal 2019, 25, 76. https://doi.org/10.1108/rpj-11-2017-0236
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28b60e43-58af-4f0b-82ba-31bdfc071574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.