PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of aerosol droplets diameter generated in aerosol jet printing

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aerosol jet printing is a contactless direct-write technique that could be used for the deposition of a variety of materials. First, used for electric paths, the technology was explored for many applications. The substantial part of the process is the generation of aerosols. The size of the droplets and the stability of the process affect the quality of the sprayed lines. This article investigates the diameter of the sprayed droplets, allowing future comparison of the results with sprayed lines. Droplets from ultrasonic and pneumatic generators were sprayed at their outlet on the polyethylene terephthalate (PET) foil. Using a digital microscope and the built-in algorithm, the diameter of the droplets was measured, and the dataset was collected as CSV files and served as a background to the box plot. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) scans were applied to verify the results obtained. The ink parameters used in the process have an influence on the aerosol generation and droplet diameter, whereas the carrier gas pressure has an impact mostly on the droplet diameter. In this case, the aerosol was produced from three types of ink in combination with two generators. For inks with a dynamic viscosity below 6.5 m·Pa-1·s-1a stable range of 5–10 μm droplet diameter was observed. A high-viscosity ink (7.5–10.5 m·Pa-1·s-1) produced droplets with diameter in the range of 6–25 μm. The diameter of the droplet decreased from 7–22 μm to 1–5 μm with a reduction in the dynamic viscosity from 7.5–10.5 m·Pa-1·s-1 to 4.5–5.5 m·Pa-1·s-1.
Wydawca
Rocznik
Strony
78--90
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 5 Łukasiewicza Street, 50-371 Wrocław, Poland
Bibliografia
  • [1] Kooij S, Astefanei A, Corthals GL, Bonn D. Size distributions of droplets produced by ultrasonic nebulizers. Sci Rep. 2019;9:6128. doi:10.1038/s41598-019-42599-8.
  • [2] Mitchell J, Nagel M. Particle size analysis from medicinal inhalers. KONA Powder Part J. 2004;22: 32–5. doi:10.14356/kona.2004010.
  • [3] Aghajani S, Accardo A, Tichem M. Process and nozzle design for high-resolution dry aerosol direct writing (dADW) of sub-100 nm nanoparticles. Addit Manuf. 2022;54: 102729. doi:10.1016/j.addma.2022.102729.
  • [4] Gou Y, Jia Y, Wang P, Sun C. Progress of inertial microfluidics in principle and application. Sensors (Basel). 2018;18: 1762. doi:10.3390/s18061762.
  • [5] Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9: 3038–46. doi:10.1039/b912547g.
  • [6] Chen G, Gu Y, Tsang H, Hines DR, Das S. The effect of droplet sizes on overspray in aerosol-jet printing. Adv Eng Mater. 2018;20, 1701084. doi:10.1002/adem.201701084.
  • [7] Saffman PG. The lift on a small sphere in a slow shear flow. J Fluid Mech. 1965;22: 385–400.
  • [8] Rühle F, Schaaf C, Stark H. Optimal control of colloidal trajectories in inertial microfluidics using the Saffman effect. Micromachines (Basel). 2020;11: 592. doi:10.3390/MI11060592.
  • [9] Akhatov IS, Hoey JM, Swenson OF, Schulz DL. Aerosol focusing in micro-capillaries: theory and experiment. J Aerosol Sci. 2008;39: 691–9. doi:10.1016/j.jaerosci.2008.04.004.
  • [10] Tafoya RR, Secor EB. Understanding effects of print-head geometry in aerosol jet printing. 2020, 5, 035004
  • [11] Hoey JM, Lutfurakhmanov A, Schulz DL, Akhatov IS. A review on aerosol-based direct-write and its applications for microelectronics. J Nanotechnol. 2012, 324380. doi:10.1155/2012/324380.
  • [12] Secor EB. Principles of aerosol jet printing. Flex Print Electron. 2018;3. 03502 doi:10.1088/2058-8585/aace28.
  • [13] Rajan R, Pandit AB. Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics. 2001;39(4): 235–55. doi:10.1016/s0041-624x(01)00054-3.
  • [14] Lang RJ. Ultrasonic atomization of liquids. J Acoust Soc Am. 1962;34,6–8
  • [15] Lozano A, García JA, Alconchel J, Barreras F, Calvo E, Santolaya JL. Influence of liquid properties on ultrasonic atomization. ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6–8 September 2017, Valencia, Spain; doi:10.4995/ilass2017.2017.4588.
  • [16] Barreras F, Amaveda H, Lozano A. Transient high-frequency ultrasonic water atomization. Exp Fluids. 2002;33: 405–13. doi:10.1007/s00348-002-0456-1.
  • [17] Villermaux E. Fragmentation. Annu Rev Fluid Mech. 2007;39: 419–46. doi:10.1146/annurev.fluid.39.050905.110214.
  • [18] Shardt N, Wang Y, Jin Z, Elliott JAW. Surface tension as a function of temperature and composition for a broad range of mixtures. Chem Eng Sci. 2021;230: 116095. doi:10.1016/j.ces.2020.116095.
  • [19] Petravic J, Delhommelle J. Hydrogen bonding in ethanol under shear. J Chem Phys. 2005;122: 234509. doi:10.1063/1.1940050.
  • [20] Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. 1998, 80, 2–12 doi: 10.1103/Phys-RevLett.80.285
  • [21] Ohnesorge WV. Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Zeitschrift Für Angewandte Mathematik Und Mechanik. 1936;16: 355–8. doi:10.1002/zamm.19360160611.
  • [22] Yakimets I, MacKerron D, Giesen P, Kilmartin KJ, Goorhuis M, Meinders E, et al. Polymer substrates for flexible electronics: achievements and challenges. Adv Mat Res. 2010;93–94: 5–8. doi:10.4028/www.scientific.net/AMR.93-94.5.
  • [23] Zhang Y, Hu G, Liu Y, Wang J, Yang G, Li D. Suppression and utilization of satellite droplets for inkjet printing: a review. Processes. 2022;10: 932. doi:10.3390/pr10050932.
  • [24] Ioannou N, Liu H, Zhang YH. Droplet dynamics in confinement. J Comput Sci. 2016;17: 463–74. doi:10.1016/j.jocs.2016.03.009.
  • [25] Taylor GI. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character. 1934;146: 501–23. doi:10.1098/rspa.1934.0169.
  • [26] Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S. Drop deformation in microconfined shear flow. Phys Rev Lett. 2006;97: 054502. doi:10.1103/PhysRevLett.97.054502.
  • [27] Yokoi K. Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle. Soft Matter. 2011;7: 5120–3. doi:10.1039/c1sm05336a.
  • [28] Motzkus C, Gensdarmes F, Géhin E. Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film. J Aerosol Sci. 2009;40: 680–92. doi:10.1016/j.jaerosci.2009.04.001.
  • [29] Yonemoto Y, Tashiro K, Shimizu K, Kunugi T. Predicting the splash of a droplet impinging on solid substrates. Sci Rep. 2022;12,5093. doi:10.1038/s41598-022-08852-3.
  • [30] Motzkus C, Gensdarmes F, Géhin E. Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. J Colloid Interface Sci. 2011;362: 540–52. doi:10.1016/j.jcis.2011.06.031.
  • [31] Stow CD, Hadfield MG. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. 1981;373, 1755, 419–441 doi: 10.1098/rspa.1981.0002.
  • [32] Almohammadi H, Amirfazli A. Droplet impact: viscosity and wettability effects on splashing. J Colloid Interface Sci. 2019;553: 22–30. doi:10.1016/j.jcis.2019.05.101.
  • [33] Latka A, Strandburg-Peshkin A, Driscoll MM, Stevens CS, Nagel SR. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys Rev Lett. 2012;109: 054501. doi:10.1103/PhysRevLett.109.054501.
  • [34] Ebrahim M, Ortega A. Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high weber number. Exp Therm Fluid Sci. 2017;80: 168–80. doi:10.1016/j.expthermflusci.2016.08.019.
  • [35] Mezhericher M, Levy A, Borde I. Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage. Chem Eng Sci. 2011;66: 884–96. doi:10.1016/j.ces.2010.11.028.
  • [36] Woźniak M, Derkachov G, Kolwas K, Archer J, Wojciechowski T, Jakubczyk D, et al. Formation of highly ordered spherical aggregates from drying microdroplets of colloidal suspension. Langmuir. 2015;31: 7860–8. doi:10.1021/acs.langmuir.5b01621.
  • [37] Deegan RD. Pattern formation in drying drops. Am Phys Soc. 2000;60: 475–85.
  • [38] Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Contact line deposits in an evaporating drop. Am Phys Soc. 2000;62: 756–65.
  • [39] Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389: 827–9. doi:10.1038/39827.
  • [40] Ikegawa M, Azuma H. Droplet behaviors on substrates in thin-film formation using ink-jet printing. JSME Int J. 2004;47: 490–6.
  • [41] Wang J, Evans JRG. Drying behaviour of droplets of mixed powder suspensions. J Eur Ceram Soc. 2006;26: 3123–31. doi:10.1016/j.jeurceramsoc.2005.08.018.
  • [42] Soares C. Gas turbine fuel systems and fuels. In: Gas turbines. Elsevier; Dallas, 2015, p.317–411. doi:10.1016/B978-0-12-410461-7.00007-9.
  • [43] Martyr AJ, Rogers DR. Chapter 15 – Measurement of liquid fuel, oil, and combustion air consumption. Engine Testing. 2021;5: 511–35. doi:10.1016/B978-0-12-821226-4.00015-2.
  • [44] Heng X, Yeates DB. Generation of high concentrations of respirable solid-phase aerosols from viscous fluids. Aerosol Sci Technol. 2018;52: 933–52. doi:10.1080/02786826.2018.1488078.
  • [45] Shimoda T, Morii K, Seki S, Kiguchi H. Introduction: the microliquid process. MRS Bull. 2003;28: 821–7.
  • [46] Xiao X, Li G, Liu T, Gu M. Experimental study of the jetting behavior of high-viscosity nanosilver inks in inkjet-based 3d printing. Nanomaterials (Basel). 2022;12: 3076. doi:10.3390/nano12173076.
  • [47] Kwon KS. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. J Micromech Microeng. 2010;20: 115005. doi:10.1088/0960-1317/20/11/115005.
  • [48] Lin CW, Kuo TH, Huang SH, Kuo YM, Wu WJ, Chen CC. Characterization of a piezoelectric inkjet aerosol generator for the study of bioaerosol survivability. Aerosol Air Qual Res. 2019;19: 959–70. doi:10.4209/aaqr.2018.07.0254.
  • [49] Reitelshöfer S, Göttler M, Schmidt P, Treffer P, Landgraf M, Franke J. Aerosol-jet-printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. In: Proceeding of SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, 15 April 2016; 2016, p.97981Y. doi:10.1117/12.2219226.
  • [50] Chen BT, Yeh HC. An improved virtual impactor: design and performance. J Aerosol Sci. 1987;18: 203–14. doi:10.1016/0021-8502(87)90056-5.
  • [51] Gupta AA, Bolduc A, Cloutier SG, Izquierdo R. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE; 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28b51b7d-6bcd-4411-b490-e75b2b117660
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.