PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main drawback of vibration-based energy harvesting is its poor efficiency due to small amplitudes of vibration and low sensitivity at frequencies far from resonant frequency. The performance of electromagnetic energy harvester can be improved by using mechanical enhancements such as mechanical amplifiers or spring bumpers. The mechanical amplifiers increase range of movement and velocity, improving also significantly harvester efficiency for the same level of excitation. As a result of this amplitude of motion is much larger comparing to the size of the electromagnetic coil. This in turn imposes the need for modelling of electromagnetic circuit parameters as the function of the moving magnet displacement. Moreover, high velocities achieved by the moving magnet reveal nonlinear dynamics in the electromagnetic circuit of the energy harvester. Another source of nonlinearity is the collision effect between magnet and spring bumpers. It has been shown that this effect should be carefully considered during design process of the energy harvesting device. The present paper investigates the influence of the above-mentioned nonlinearities on power level generated by the energy harvester. A rigorous model of the electromagnetic circuit, derived with aid of the Hamilton’s principle of the least action, has been proposed. It includes inductance of the electromagnetic coil as the function of the moving magnet position. Additionally, nonlinear behaviour of the overall electromagnetic device has been tested numerically for the case of energy harvester attached to the quarter car model moving on random road profiles. Such a source of excitation provides wide band of excitation frequencies, which occur in variety of real-life applications.
Rocznik
Strony
1373--1383
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5b, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5b, 02-106 Warsaw, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Faculty of Earth Sciences and Spatial Management, Maria Curie-Sklodowska University, Al. Kraśnicka 2d, 20-718 Lublin, Poland
Bibliografia
  • [1] Y. Bai, H. Jantunen, and J. Juuti, “Energy harvesting research: The road from single source to multisource”, Adv. Mater. 30(34), 1707271 (2018), doi: 10.1002/adma.201707271.
  • [2] A. Tomaszuk and A. Krupa, “High efficiency high step-up dc/dc converters – a review”, Bull. Pol. Ac.: Tech. 59(4), 475–483 (2011), doi: 10.2478/v10175-011-0059-1.
  • [3] W. Janke, M. Baczek, and J. Krasniewski, “Large-signal averaged models of the non-ideal flyback converter derived by the separation of variables”, Bull. Pol. Ac.: Tech. 68(1), 81–88 (2020), doi: 10.24425/bpasts.2020.131838.
  • [4] C. Wei and X. Jing, “A comprehensive review on vibration energy harvesting: Modelling andrealization”, Renew. Sust. Energ. Rev. 74, 1–18 (2017), doi: 10.1016/j.rser.2017.01.073.
  • [5] W. Wang, J. Cao, N. Zhang, J. Lin, and W.-H. Liao, “Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments”, Energy Conv. Manag. 132, 189–197 (2017), doi: 10.1016/j.enconman.2016.11.026.
  • [6] Spreemann D, Manoli Y. Electromagnetic Vibration Energy Harvesting Devices. Dordrecht: Springer; 2012, doi: 10.1007/978-94-007-2944-5.
  • [7] S. Yang, S.-Y. Jung, K. Kim, P. Liu, S. Lee, J. Kim, and H. Sohn, “Development of a tunable low-frequency vibration energy harvester and its application to a self-contained wireless fatigue crack detection sensor”, Struct. Health Monit. 18(3), 920–933 (2019), doi: 10.1177/1475921718786886.
  • [8] J. Snamina and B. Sapinski, “Energy balance in self-powered mr damper-based vibration reduction system”, Bull. Pol. Ac.: Tech. 59(1), 75–80 (2011), doi: 10.2478/v10175-011-0011-4.
  • [9] S. Lenci, “On the production of energy from sea waves by a rotating pendulum: A preliminary experimental study”, J. Appl. Nonlinear Dyn. 3(2), 173–186 (2014), doi: 10.5890/JAND.2014.06.008.
  • [10] I. Shahosseini and K. Najafi, “Mechanical amplifier for translational kinetic energy harvesters”, J. Phys. Conf. Ser. 557, 012135 (2014), doi: 10.1088/1742-6596/557/1/012135.
  • [11] B. Maamer, A. Boughamoura, A.M. Fath El-Bab, L.A. Francis, and F. Tounsi, “A review on design improvement sand techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes”, Energy Conv. Manag. 199, p. 111973, 2019, doi: 10.1016/j.enconman.2019.111973.
  • [12] M.A. Halim, H. Cho, and J.Y. Park, “Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester”, Energy Conv. Manag. 106, 393–404 (2015), doi: 10.1016/j.enconman.2015.09.065.
  • [13] F. Cottone, R. Frizzell, S. Goyal, G. Kelly, and J. Punch, “Enhanced vibrational energy harvester based on velocity amplification”, J. Intell. Mater. Syst. Struct. 25(4), 443–451 (2014), doi: 10.1177/1045389X13498316.
  • [14] R. Frizzell, G. Kelly, F. Cottone, E. Boco, V. Nico, D. O’Donoghue, and J. Punch, “Experimental characterisation of dual-mass vibration energy harvesters employing velocity amplification”, J. Intell. Mater. Syst. Struct. 27(20), 2810–2826 (2016), doi: 10.1177/1045389X16642030.
  • [15] A. Haroun, I. Yamada, and S. Warisawa, “Micro electromagnetic vibration energy harvester based on free/impact motion for low frequency – large amplitude operation”, Sens. Actuator A-Phys. 224, 87–98 (2015), doi: 10.1016/j.sna.2015.01.025.
  • [16] K. Pancharoen, D. Zhu, and S.P. Beeby, “Design optimization of a magnetically levitated electromagnetic vibration energy harvester for body motion”, J. Phys. Conf. Ser. 773, 012056 (2016), doi: 10.1088/1742-6596/773/1/012056.
  • [17] B. Mann and B. Owens, “Investigations of a nonlinear energy harvester with a bistable potential well”, J. Sound Vibr. 329(9), 1215–1226 (2010), doi: 10.1016/j.jsv.2009.11.034.
  • [18] H. Zhang, L.R. Corr, and T. Ma, “Issues in vibration energy harvesting”, J. Sound Vibr. 421, 79–90 (2018), doi: 0.1016/j.jsv.2018.01.057.
  • [19] P. Alevras and S. Theodossiades, “Vibration energy harvester for variable speed rotor applications using passively self-tuned beams”, J. Sound Vibr. 444, 176–196 (2019), doi: 10.1016/j.jsv.2018.11.007.
  • [20] X. Wang, S. John, S. Watkins, X. Yu, H. Xiao, X. Liang, and H. Wei, “Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters”, Mech. Syst. Signal Proc. 52-53, 672–684 (2015), doi: 10.1016/j.ymssp.2014.07.007.
  • [21] K. Kecik, A. Mitura, S. Lenci, and J. Warminski, “Energy harvesting from a magnetic levitation system”, Int. J. Non-Linear Mech. 94, 200–206 (2017), doi: 10.1016/j.ijnonlinmec.2017.03.021.
  • [22] N.G. Elvin and A.A. Elvin, “An experimentally validated electromagnetic energy harvester”, J. Sound Vibr. 330(10), 2314–2324 (2011), doi: 10.1016/j.jsv.2010.11.024.
  • [23] T. Sobczyk and M. Radzik, “Improved algorithm for periodic steady-state analysis in nonlinear electromagnetic devices”, Bull. Pol.Ac.: Tech. 67(5), 863–869 (2019), doi: 10.24425/bpasts.2019.130878.
  • [24] T. Lubin, K. Berger, and A. Rezzoug, “Inductance and force calculation for axisymmetric coil systems including an iron core of finite length”, Prog. Electromagn. Res. B 41, 377–396 (2012), doi: 0.2528/PIERB12051105.
  • [25] A. Preumont, Mechatronics – Dynamics of Electromechanical and Piezoelectric Systems, Netherlands: Springer, 2006, doi: 10.1007/1-4020-4696-0.
  • [26] I. Zaabar and K. Chatti, “Identification of localized roughness features and their impact on vehicle durability”, in 11th International Symposium on Heavy Vehicle Transportation Technology, 2010.
  • [27] T.F. Tyan, Y.-F. Hong, R. Shun, H. Tu, and W. Jeng, “Generation of random road profiles”, J. Adv. Eng. 4, 151–156 (2009).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28b44150-5d37-406a-a206-70f6e4a995fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.