PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of transients on end-to-end availability for a meshed network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
17th Summer Safety & Reliability Seminars - SSARS 2023, 9-14 July 2023, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
The disruption of services must be kept at a minimum in telecommunications networks so that the consequences are not too severe and their durations are as short as possible. Maintenance policies often rely on the steady-state availabilities of each element of the system, and focus on the system’s weak links. The end-to-end (or two-terminal) availability – a standard performance index – of a meshed network has long been studied, but mainly for small systems, and assuming constant values for the availability of each element. When taken into account, the time-dependent contributions of links and nodes to the system unavailability were computed using exponential failure and repair distributions. In this work we revisit the meshed network first proposed by Walter, Esch, and Limbourg (ESREL 2008), and compute the end-to-end availability between two nodes, where the individual contributions of links and nodes are kept. This allows the ranking of links and nodes, using well-known performance indices (Birnbaum, Risk Reduction Worth, etc.). We can thus determine the elements that should receive due attention in maintenance and resilience studies. However, as the steady-state availability may not always be a lower bound to the transient availability in the case of non-exponential failure and repair distributions, we have studied the influence of such configurations on the time-dependent behaviours of all the aforementioned quantities. We then discuss the influence of uncertainty in the availability values, and compare the results obtained for the all-terminal reliability, another often-used performance criterion of networks.
Bibliografia
  • Beichelt, F. & Spross, L. 1989. Bounds on the reliability of binary coherent systems. IEEE Transactions on Reliability 38(4), 425-427.
  • Beichelt, F. & Tittmann, P. 2012. Reliability and Maintenance: Networks and Systems. CRC Press, Taylor & Francis Group, New York.
  • Carnevali, L., Flammini, F., Paolieri, M. & Vicario, E. 2015. Non-Markovian performability evaluation of ERTMS/ETCS level 3. M. Beltrán et al. (Eds.), Computer Performance Engineering. Springer International Publishing, 47-62.
  • Distefano, S., Longo, F., & Scarpa, M. 2010. Availability assessment of HA standby redundant clusters. Proceedings of 29th IEEE Symposium on Reliable Distributed Systems. The Institute of Electrical and Electronics Engineers, 265-274.
  • Eid, M. 2021. Network connectivity dynamic modelling. K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2021. Gdynia Maritime University, Gdynia, 117-127.
  • Henley, E.J. & Kumamoto, H. 1991. Probabilistic Risk Assessment: Reliability Engineering, Design, and Analysis. IEEE Press, New York.
  • Kołowrocki, K. 2004. Reliability of Large Systems. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • Kuo, W. & Zuo, M.J. 2003. Optimal Reliability Modeling - Principles and Applications. John Wiley & Sons, Inc., Hoboken.
  • Li, C., Fang, Q., Ding, L., Cho, Y. K. & Chen, K. 2020. Time-dependent resilience analysis of a road network in an extreme environment. Transportation Research Part D: Transport and Environment 85, paper 102395.
  • Lin, S.-Y. & El-Tawil, S. 2020. Time-dependent resilience assessment of seismic damage and restoration of interdependent lifeline systems. Journal of Infrastructure Systems 26(1), paper 04019040.
  • Mauro, M.D., Galatro, G., Longo, M., Postiglione, F. & Tambasco, M. 2017. Availability evaluation of a virtualized IP multimedia subsystem for 5G network architectures. M. Čepin et al. (Eds.) Safety and Reliability - Theory and Applications, Proceedings of ESREL 2017, June 18-22, 2017, Portorož, Slovenia. CRC Press/Balkema – Taylor & Francis Group, 2203-2210.
  • Mauro, M.D., Galatro, G., Longo, M., Postiglione, F. & Tambasco, M. 2018. Availability modeling of a virtualized IP multimedia subsystem using non-Markovian stochastic reward nets. S. Haugen et al. (Eds.) Safety and Reliability – Safe Societies in a Changing World, Proceedings of ESREL 2018, June 17-21, 2018, Trondheim, Norway. Taylor & Francis Group, paper 305.
  • Ouyang, M. & Dueñas-Osorio, L. 2012. Time-dependent resilience assessment and improvement of urban infrastructure systems. Chaos 22, paper 033122.
  • Pham, H. 2006. Basic statistical concepts. H. Pham (Ed.). Springer Handbook of Engineering Statistics. Springer-Verlag London Limited, 3-48.
  • Pham-Gia, T. & Turkkan, N. 1999. System availability in a gamma alternating renewal process. Naval Research Logistics 46, 822-844.
  • Prékopa, A, Boros, E. & Lih, K.-W. 1991. The use of binomial moments for bounding network reliability. F.S. Roberts et al. (Eds.), Reliability of Computer and Communication Networks (DIMACS 5), American Mathematical Society, New Brunswick, 197-212.
  • Rao, M.S. & Naikan, V.N.A. 2015. A system dynamics model for transient availability modeling of repairable redundant systems policy. International Journal of Performability Engineering 11(3), 203-211.
  • Rausand, M. & Høyland, A. 2004. System Reliability Theory, Models, Statistical Methods and Applications, 2nd edition. Wiley, Hoboken.
  • Sarkar, J. & Chaudhuri, G. 1999. Availability of a system with gamma life and exponential repair time under a perfect repair policy. Statistics & Probability Letters 43, 189-196.
  • Tanguy, C. 2007. What is the probability of connecting two points? Journal of Physics A: Mathematical and Theoretical 40, 10099-10116.
  • Tanguy, C. 2009. Asymptotic dependence of average failure rate and MTTF for a recursive, meshed network architecture. Reliability & Risk Analysis: Theory & Applications 2(2) part 2, 45-54.
  • Tanguy, C., Buret, M., & Brinzei, N. 2019. Is it safe to use MTTF/(MTTF + MTTR) for the availability? M. Beer et al. (Eds.). Safety and Reliability – Theory and Applications, Proceedings of the 29th European Safety and Reliability Conference. Research Publishing, Singapore, 925-929.
  • Tanguy, C. 2020. When considering the asymptotic availability is not a safe bet. P. Baraldi et al. (Eds.). Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference. Research Publishing, Singapore, 3091-3098.
  • Tanguy, C. 2022a. Influence of availability transients on network resilience. R. Remenytė-Prescott et al. (Eds.), Advances in Modelling to Improve Network Resilience: Proceedings of the 60th ESReDA Seminar, Publications Office of the European Union, Luxembourg, 133-144.
  • Tanguy, C. 2022b. Transient behaviour of instantaneous and average availabilities in non-Markovian configuration. K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2022. Gdynia Maritime University, Gdynia, 185-194.
  • Walter, M., Esch, S. & Limbourg, P. 2008. A copula-based approach for dependability analyses of fault-tolerant systems with interdependent basic events. S. Martorell et al. (Eds.), Safety, Reliability and Risk Analysis: Theory, Methods and Applications, Proceedings of ESREL 2008, September 22–25, 2008, Valencia, Spain. CRC Press/Balkema – Taylor & Francis Group, 1705-1714.
  • Zeiler, P., Müller, F. & Bertsche, B. 2017. New methods for the availability prediction with confidence level. L. Walls et al. (Eds.), Risk, Reliability and Safety: Innovating Theory and Practice. Taylor & Francis Group Publishing, London, 313-320.
  • Zeng, Z., Du, S. & Ding, Y. 2021. Resilience analysis of multi-state systems with time-dependent behaviors. Applied Mathematical Modelling 90, 889-911.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28ad6c69-67c3-446d-a990-4e7f407f664a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.