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Abstract 
 

The disruption of services must be kept at a minimum in telecommunications networks so that the con-
sequences are not too severe and their durations are as short as possible. Maintenance policies often 
rely on the steady-state availabilities of each element of the system, and focus on the system’s weak links. 
The end-to-end (or two-terminal) availability – a standard performance index – of a meshed network 
has long been studied, but mainly for small systems, and assuming constant values for the availability 
of each element. When taken into account, the time-dependent contributions of links and nodes to the 
system unavailability were computed using exponential failure and repair distributions. In this work we 
revisit the meshed network first proposed by Walter, Esch, and Limbourg (ESREL 2008), and compute 
the end-to-end availability between two nodes, where the individual contributions of links and nodes are 
kept. This allows the ranking of links and nodes, using well-known performance indices (Birnbaum, Risk 
Reduction Worth, etc.). We can thus determine the elements that should receive due attention in mainte-
nance and resilience studies. However, as the steady-state availability may not always be a lower bound 
to the transient availability in the case of non-exponential failure and repair distributions, we have 
studied the influence of such configurations on the time-dependent behaviours of all the aforementioned 
quantities. We then discuss the influence of uncertainty in the availability values, and compare the re-
sults obtained for the all-terminal reliability, another often-used performance criterion of networks. 
 
1. Introduction  
 

Telecommunications networks must recover 
quickly after failures, natural events, cyberat-
tacks, and so on. Determining the weak links of 
the system allows the development of effective 
maintenance strategies. Standard approaches are 
mostly based on the knowledge of the steady-state 
availabilities of the various components of the 
whole system. 
Recent publications have shown important transi-
ent variations of the availability in several tele-
communications subfields: 5G systems and Net-
work Virtualization Functions studies (Mauro et 
al., 2017, 2018), high availability of cluster con-
figurations (Distefano et al., 2010), and commu-
nication channels in the European railway indus-
try (Carnevali et al., 2015), to cite but a few. They 

demonstrate that the availability may oscillate for 
an extended period of time. 
Resilience issues have also initiated a large body 
of work, and it is worth noticing that, especially in 
the last few years, time-dependent aspects of re-
silience have come to the fore in urban and com-
modities infrastructures (Li et al., 2020; Ouyang 
& Dueñas-Osorio, 2012; Lin & El-Tawil, 2020; 
Zeiler et al, 2017; Zeng et al., 2021). Such studies 
may require important computational effort, be-
cause the investigated systems may be very large. 
Another fruitful approach has been to consider 
medium-sized systems, for which the number of 
parameters remains tractable while allowing to get 
insights about the behaviour of larger systems. 
Such a configuration has recently been studied 
(Eid, 2021; Tanguy, 2022a), in which the time-de-
pendent contributions of nodes and links to the 
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global all-terminal availability (the all-terminal 
reliability or availability, usually written RelA in 
the literature, represents the probability that all 
nodes of a network are connected) have been as-
sessed, when components undergo failures and re-
pairs obeying exponential distributions. 
This approach is very promising for the descrip-
tion of telecommunications networks, and we 
have decided to apply some of our former results 
in the case of non-exponential distributions (Tan-
guy et al., 2019; Tanguy, 2020) to investigate the 
assessment of potential weak links of the network, 
and determine when the assumption of exponen-
tial distributions may be questionable. 
In the present work, we consider another perfor-
mance measure of telecommunication networks, 
namely the end-to-end (or point-to-point) availa-
bility, also called two-terminal availability in the 
literature (usually written as Rel2(  →  ), the 
probability of operation between source   and 
destination  ). For such a measure, contributions 
of nodes and links cannot always be separated. 
We show that, similarly to what occurs for the all-
terminal availability in the Eid configuration (Eid, 
2021; Tanguy, 2022a), transient effects may not 
be neglected, especially when failure time distri-
butions are not restricted to exponentials. 
The chapter, in which we assume no correlation 
between elements of the system, is organized as 
follows. In Section 2, we present the medium-
sized network architecture proposed in (Walter et 
al., 2008), along with the main assumptions on the 
availabilities of the nodes and links. Section 3 de-
scribes the method used to obtain the end-to-end 
availability between source and destination. This 
expression is much simpler when all nodes and 
links are supposed identical, with availabilities   
and  , respectively. In Section 4, we compute a 
few performance measures (Birnbaum, Raw 
Achievement Worth (RAW), Risk Reduction 
Worth (RRW), etc.) in order to determine the 
weakest links of the system, so that maintenance 
efforts are focussed on the proper network ele-
ments, be they nodes or links. Section 5 is devoted 
to the study of the relative influence of links and 
nodes to the total end-to-end availability. We 
show that it may strongly depend on transients 
(during the mission time) even if in the long term, 
the steady-state behaviour is recovered, as ex-
pected. We discuss in Section 6 the influence of 
another factor, namely the uncertainty about the 
Mean Time To Failure (MTTF) and Mean Time 

To Repair (MTTR) on the ranking of the system’s 
components. We also compare the results ob-
tained with those derived for the all-terminal 
availability. We conclude with remarks about the 
assessment of the reliability of large systems 
(Kołowrocki, 2004). 
 
2. Description of network 
 

2.1. Graph representation of network 
 

The network considered in this work has been pro-
posed in (Walter et al., 2008), and is represented 
by the graph displayed in Figure 1. The perfor-
mance index considered here is the two-terminal 
reliability or availability, depending on the con-
text (their expressions are formally identical, 
namely the probability that the source and desti-
nation nodes are connected). It has long been 
known that the computation of the two-terminal 
reliability for the most general graphs is complex 
even when nodes are perfect (they do not fail), and 
when edges of the graph have the same reliabil-
ity/availability  . It may become cumbersome 
even for a small number of nodes in the underly-
ing graph (Beichelt & Tittmann, 2012). 
 

 
 

Figure 1. Network considered in this study (after 
Walter et al., 2008).  
 
In Figure 1 the source node is  , the destination 
node is  . The graph is undirected. Intermediate 
nodes and links are labelled. 
 
2.2. Reference numerical data 
 

As mentioned in the Introduction, the availabili-
ties of nodes and links are often assumed to take 
their steady-state values, and do not vary with 
time. When a time-dependence is introduced, it is 
mostly through the use of exponential distribu-
tions for lifetimes and repairs. For this reason, we 
shall consider the numerical values given in Ta-
ble 1 for the failure and repair rates of all the nodes 
and links of the system, assuming identical ele-
ments for the two families of equipment. 
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Table 1. Failure and repair rate values used for  
reference in this study 
 

 Failure rate   
(hour-1) 

Repair rate   
(hour-1) 

Node 0.0009 0.0091 
Edge 0.0300 0.1700 

 
From Table 1, it is easy to derive the steady-state 
values    and    of the links and nodes availa-
bilities, respectively, obtained by the well-known 
expression  /( +   ) (Henley & Kumamoto, 
1991; Kuo & Zuo, 2003; Rausand & Høyland, 
2004): 
   = 0.85, (1) 
   = 0.91. (2) 
 
These values will serve as reference when study-
ing the influence of transients for the whole sys-
tem’s availability. 
 
2.3. Exponential distributions 
 

When the failure and repair distributions are ex-
ponentials, one can use the well-known formula 
(Kuo & Zuo, 2003; Rausand & Høyland, 2004) 
for the average availability  ( ) 
  ( ) =       +          (    )  . (3) 
 
Application of (3) for the values of Table 1 gives 
the time-dependent average availabilities  ( ) 
and  ( ) of links and nodes, respectively: 
  ( ) =       +           / , (4) 
  ( ) =       +          /   . (5) 
 
2.4. Gamma distributions 
 

Gamma distributions (Rausand & Høyland, 2004; 
Pham, 2006) are, after exponentials, among the 
most often used distributions in reliability theory. 
We consider in the following the gamma distribu-
tion defined by its density 
  ( ) =  (   )       ( )         , (6) 
 
where α is the so-called shape parameter, and Γ is 

the Euler gamma function. The definition (6) en-
sures that the Mean Time To Failure (MTTF) is 
still equal to 1/λ. Several works have studied the 
time-dependent availability when the lifetime 
obeys a gamma distribution (Pham-Gia & Turk-
kan, 1999; Rao & Naikan, 2015; Sarkar & 
Chaudhuri, 1999; Tanguy et al., 2019; Tanguy, 
2022b). It is possible to express  ( ) and  ( ) ex-
actly and analytically in some cases, for instance 
when α is an integer, a possibility that we shall use 
in the following.  
 
3. Calculation of two-terminal reliability of 

Walter configuration  
 

Calculation of the reliability or availability of a 
meshed structure – such as that described in Fig-
ure 1 – can be quite demanding, especially when 
all elements of the systems are distinct and the un-
derlying graph representing the system is not of 
the series-parallel type. For a non-series-parallel 
graph, exact formula are often very complicated 
or cumbersome, with a number of terms that in-
creases greatly with the number of components. 
Textbooks mostly limit themselves to the bridge 
structure (Kuo & Zuo, 2003; Rausand & Høyland, 
2004). However, for a few recursive families of 
graphs, it is possible to obtain the results easily 
because of an inherent factorization of the relia-
bility (Tanguy, 2007). 
 
3.1. Recursive analysis of Walter  

configuration 
 

It is possible to represent the graph of Figure 1 in 
a slightly different way, as displayed on Figure 2. 
The gist of the method is to reproduce the same 
network, by adding a few virtual links and nodes, 
the reliabilities of which are equal to 1 (they are 
perfect, and thus never fail). This means that all 
things considered, the behaviour of the whole sys-
tem is not modified. 
 

 
 

Figure 2. First modified representation of the graph 
of Figure 1. Note the addition of perfect nodes and 
perfect links between   and  , and   and  . 
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In a second step, we add extra nodes and links, the 
reliabilities of which are zero; they do not function 
(see Figure 3). 
 

 
 

Figure 3. Second modified representation of the 
graph of Figure 1, after adding phantom nodes and 
links (in red). A structural recursiveness appears 
(Beichelt & Spross, 1989).  
 
After the second step, one can observe the recur-
sive structure of the graph (Beichelt & Spross, 
1989; Prékopa et al., 1991). It turns out that this 
recursive architecture has been solved for arbi-
trary probabilities of operations for all elements 
(nodes and links). The two-terminal reliability be-
tween   and   is then obtained via a product of 15 × 15 matrices (Tanguy, 2009). 
 
3.2. Complete analytical result 
 

Using the general expression of these matrices 
with individual availabilities –   ,   , etc. for the 
nodes,   ,…,    for the links – we have been able 
to compute the exact two-terminal Rel2(  →  ). 
Since the full expression contains 917 terms, we 
only report in the following the expressions for 
identical links or nodes, with only two variables   
and  , not 23 as in the general case. The full ex-
pression may be obtained from the author. 
 
3.3. Result for identical links and nodes 
 

Considering identical nodes and identical links al-
lows for a much simpler expression of the two-
terminal availability between source   and desti-
nation  . We also give in equations (7) to (9) the 
results when either nodes or links are perfect: 
 Rel2( ,  ) = 3    + (8  − 9  + 2  )    + (13  − 38  + 25  − 5  )    + (14  − 89  + 151  − 94   + 20   )    + (6  − 78  + 278   − 428     + 326   − 122   + 18   )    (7) 
 Rel2( ,  = 1) = 3  + 8  + 4  − 22    − 58  + 68  + 184   − 408     + 326   − 122   + 18    (8) 

Rel2( = 1, ) = 3  +   − 5  + 2  . (9) 
 
It is worth noting that by contrast to what happens 
for the all-terminal reliability, Rel2( ,  ) does not 
factorize in functions of   and   (Eid, 2021; Tan-
guy, 2022a). Furthermore, all expressions sim-
plify to 1 when links and nodes are perfect, as ex-
pected. 
 
3.4. Steady-state unavailabilities 
 

It is in general easier to deal with unavailabilities 
defined by  = 1 − Rel2, instead of availabilities. 
Considering the steady-state values for nodes and 
links given in equations (1) and (2), one gets (the 
subscript ∞ indicates a steady-state value) 
 (  )total = 0.32302070840136, (10) 
 
whereas if one considers perfect nodes ( = 1), 
 (  )links = 0.06389109843798, (11) 
 
while for perfect links ( = 1), 
 (  )nodes = 0.20333435421525. (12) 
 
It is important to stress that the sum of equations 
(11) and (12) does not give (10), because of cor-
relations between the variables   and   in (7). Be-
sides, these numerical values show that nodes 
contribute to a greater unavailability of the system 
at very long times. Before considering what hap-
pens at shorter times, we first investigate what can 
be said about the performance indices of each el-
ement, for which the complete expression of Rel2(  →  ) is required.  
 
4. Performance indices for end-to-end  

availability for Walter configuration 
 

Various performance measures have been defined 
to assess the criticality of each element of the sys-
tem to the latter’s operation. The most popular are 
Birnbaum, Improvement Potential (IP), Risk 
Achievement Worth (RAW), Risk Reduction 
Worth (RRW), Criticality Importance (CI), 
Fussell-Vesely (FV), etc. (Rausand & Høyland, 
2004). Their role is to rank or sort all elements by 
their relative importance. These performance in-
dices depend on each element (node or link), 
through its individual availability as well as its lo-
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cation in the system. It is worth stressing that sev-
eral of these measures can be deduced directly 
from the structure function of the system, which 
is formally identical to Rel2(  →  ) (Rausand & 
Høyland, 2004). In most studies, only the asymp-
totic availabilities are considered. 
A similar study of the ranking of components of a 
system has been performed for the all-terminal 
availability of the Eid configuration (Eid, 2021; 
Tanguy, 2022a). In that case, the role of nodes and 
links were quite distinct, and all nodes had the 
same importance. In the present work, this is not 
true anymore when the two-terminal availability 
is under consideration. 
 
4.1. Birnbaum importance factor 
 

The Birnbaum importance factor — probably the 
most used index— is defined by the derivative of 
the system availability with respect to the availa-
bility of the component. The exact knowledge of Rel2(  →  ) allows therefore to compute every 
Birnbaum factor  ( ). Again, the full expressions 
are too lengthy to be given here. The numbers of 
terms are 917 for    and    (of course), but de-
crease to 607 for    and 582 for   . Only after the 
differentiation has been performed can one again 
assume that all nodes and links are identical, and 
obtain simpler expressions of the Birnbaum index. 
They are: 
 I(B)(  ) = 3    + (8  − 9  + 2  )  +(13  − 38  + 25  − 5  )  + (14  −89  + 151  − 94   + 20   )  + (6  −78  + 278   − 428   + 326   −122   + 18   )  } (13a) 
 I(B)(  ) = 3    + (8  − 9  + 2  )  +(13  − 38  + 25  − 5  )  + (14  −89  + 151  − 94   + 20   )  + (6  −78  + 278   − 428   + 326   −122   + 18   )  } (13b) 
 I(B)(  ) = 2    + (7  − 9  + 2  )  +(10  − 34  + 25  − 5  )  + (12  −78  + 138  − 90   + 20   )  + (6  −78  + 278   − 428   + 326   −122   + 18   )   (13c) 
 I(B)(  ) =     + (4  − 6  + 2  )  +(9  − 24  + 18  − 5  )  + (11  −66  + 106  − 63   + 13   )  + (6  −

78  + 278   − 428   + 326   −122   + 18   )   (13d) 
 I(B)(  ) =     + (6  − 4  )  + (11  −36  + 25  − 5  )  + (12  − 82  +144  − 92   + 20   )  + (6  − 78  +278   − 428   + 326   − 122   +18   )   (13e) 
 I(B)(  ) = 2    + (5  − 7  + 2  )  +(10  − 31  + 22  − 5  )  + (13  −84  + 145  − 92   + 20   )  + (6  −78  + 278   − 428   + 326   −122   + 18   )   (13f) 
 I(B)(  ) =     + (4  − 3  )  + (9  −27  + 17  − 3  )  + (11  − 69  +117  − 72   + 15   )  + (6  − 78  +278   − 428   + 326   − 122   +18   )   (13g) 
 I(B)(  ) = (2  −   )  + (9  − 17  +6  )  + (14  − 81  + 128  − 75   +15   )  + (6  − 78  + 278   −428   + 326   − 122   + 18   )   (13h) 
 I(B)(  ) = 2    + (4  − 6  + 2  )  +(7  − 21  + 12  − 2  )  + (11  −74  + 128  − 80   + 17   )  + (6  −78  + 278   − 428   + 326   −122   + 18   )   (13i) 
 I(B)(  ) = 2    + (5  − 8  + 2  )  +(5  − 26  + 22  − 5  )  + (6  −50  + 110  − 82  + 20   )  + (2  −35  + 160  − 299   + 264   − 111   +18   )   (13j) 
 I(B)(  ) =     + (4  − 4  )  + (5  −25  + 23  − 5  )  + (4  − 44  +99  − 78  + 20   )  + (2  − 46  +193  − 333   + 280   − 114   +18   )   (13k) 
 I(B)(  ) =     + (3  − 3  )  + (4  −22  + 17  − 3  )  + (5  − 37  +84  − 63  + 15   )  + (5  − 53  +193  − 325   + 273   − 112   +18   )   (13l) 
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I(B)(  ) =     + (4  − 3  )  + (8  −26  + 17  − 3  )  + (8  − 60  +109  − 70  + 15   )  + (3  − 55  +224  − 372   + 299   − 117   +18   )   (13m) 
 I(B)(  ) = (3  − 5  + 2  )  + (5  −15  + 15  − 5  )  + (7  − 41  +72  − 51  + 13   )  + (5  − 58  +205  − 330   + 271   − 111   +18   )   (13n) 
 I(B)(  ) =     + (2  − 6  + 2  )  +(5  − 17  + 18  − 5  )  + (7  −47  + 95  − 75  + 20   )  + (3  −38  + 155  − 280   + 250   − 108   +18   )   (13o) 
 I(B)(  ) = (3  − 2  )  + (7  − 25  +21  − 5  )  + (7  − 53  + 106  −79  + 20   )  + (3  − 38  + 163  −296   + 260   − 110   + 18   )   (13p) 
 I(B)(  ) = (2  −   )  + (6  − 14  +6  )  + (8  − 59  + 106  − 69  +15   )  + (2  − 41  + 182  − 322   +273   − 112   + 18   )   (13q) 
 I(B)(  ) = (  −   )  + (6  − 10  +4  )  + (9  − 53  + 84  − 50  +10   )  + (4  − 61  + 226  − 361   +288   − 114   + 18   )   (13r) 
 I(B)(   ) =     + (3  − 5  + 2  )  +(8  − 21  + 16  − 5  )  + (8  −55  + 93  − 58  + 13   )  + (4  −58  + 223  − 363   + 291   − 115   +18   )   (13s) 
 I(B)(   ) =     + (2  − 4  + 2  )  +(5  − 17  + 15  − 5  )  + (7  −48  + 85  − 56  + 13   )  + (3  −52  + 210  − 352   + 288   − 115   +18   )   (13t) 
 I(B)(   ) = 2    + (3  − 6  + 2  )  +(3  − 15  + 10  − 2  )  + (5  −48  + 103  − 73  + 17   )  + (3  −54  + 213  − 357   + 292   − 116   +18   )   (13u) 
 

I(B)(   ) =     + (6  − 12  + 4  )  +(11  − 62  + 99  − 59  + 12   )  +(6  − 70  + 247  − 386   + 302   −117   + 18   )   (13v) 
 I(B)(   ) = 2    + (4  − 6  + 2  )  +(5  − 21  + 12  − 2  )  + (6  −55  + 114  − 77  + 17   )  + (3  −43  + 186  − 332   + 281   − 114   +18   )  . (13w) 
 
Here again we see that the expressions have mixed 
contributions from the two variables   and   
which can be time-dependent.  
We have ranked the 23 parameters according to 
the Birnbaum index when the availabilities have 
their steady-state values, deduced from (1) and 
(2): 0.85 for links and 0.91 for nodes. The results 
are given in Table 2; the list of components sorted 
by decreasing importance is (   and    are equiv-
alent, of course). Different colours are used for 
nodes (blue) and links (violet). 
   ,  ,  ,   ,  ,  ,   ,  ,  ,  ,  ,   ,     ,  ,   ,  ,  ,  ,  ,   ,  ,  ,  .  
 
Table 2. Birnbaum importance index for steady-state 
availabilities (0.85 for links and 0.91 for nodes) 
 

Component Birnbaum importance factor    0.74393328747103262664    0.74393328747103262664    0.26333393407261324265    0.21733574589545803622    0.20664782846623041385    0.20441697276285038447     0.17391999915238775907    0.16454665926328098204    0.16022199561232842752    0.15905456597758160579    0.13943641196591197341     0.13611988634670647377     0.11423830510275209527    0.08777557939567974825     0.07419140283146072724    0.05752211328857445413    0.04955841196543736364    0.03097058413067667711    0.02987899928630222520     0.02939563654635550653    0.02766504542418655675    0.02221788403848708225    0.01796327868123634270 
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While the first six elements are nodes, one can ob-
serve that node   trails after eight links. Another 
interesting feature of the results of Table 2 is the 
huge difference between the Birnbaum indices for    (or   ) and   : a factor larger than 40. That 
means that a greater attention should be exercised 
on the first elements of the above list, for the sake 
of maintenance and resilience policies in order to 
ensure or improve the system performance. 
The variations of the Birnbaum factors have been 
plotted in Figure 4 for  =   = 0.91, while   
may vary between 0 and 1. One can notice that the 
rankings do not vary very much when the availa-
bilities remain larger than their asymptotic value  ∞ = 0.85. 
 

 
 

Figure 4. Birnbaum factors for  =   = 0.91.  
 
The variations of the Birnbaum factors have also 
been plotted in Figure 5 for  =   = 0.85, while   may vary between 0.8 and 1. Again, the rank-
ings do not change drastically when the availabil-
ities remain larger than  ∞ = 0.91. 
 

 
 

Figure 5. Birnbaum factors for  =   = 0.85.  

4.2. Risk Achievement Worth  
 

The Risk Achievement Worth (RAW) is propor-
tional to the unavailability of the system when el-
ement   fails (Rausand & Høyland, 2004), so  
that (we omit here the common denominator  1 −  Rel2(  →  )) 
 I(RAW)( ) ∝ 1 −  Rel2(  →  ; 0 ).  (14) 
 
For this importance measure, one can derive 
lengthy expressions again when individual avail-
abilities are kept throughout the calculations. Re-
turning to two families of nodes and links, simpler 
expressions similar to equations (13a to 13w) can 
be found.  
 I(RAW)(  ) ∝ 1 (15a) 
 I(RAW)(  ) ∝ 1 (15b) 
 I(RAW)(  ) ∝ 1 −     −     + (−3  +4  )  + (−2  + 11  − 13  + 4   )  
 (15c) 
 I(RAW)(  ) ∝ 1 − 2    + (−4  + 3  )  +(−4  + 14  − 7  )  + (−3  + 23  −45  + 31   − 7   )   (15d) 
 I(RAW)(  ) ∝ 1 − 2    + (−2  + 5  −2  )  + (−2  + 2  )  + (−2  + 7  −7  + 2   )   (15e) 
 I(RAW)(  ) ∝ 1 −     + (−3  + 2  )  +(−3  + 7  − 3  )  + (−  + 5  − 6  +2   )   (15f) 
 I(RAW)(  ) ∝ 1 − 2    + (−4  + 6  −2  )  + (−4  + 11  − 8  + 2  )  +(−3  + 20  − 34  + 22   − 5   )  
 (15g) 
 I(RAW)(  ) ∝ 1 − 3    + (−6  + 8  −2  )  + (−4  + 21  − 19  + 5  )  +(8  − 23  + 19   − 5   )   (15h) 
 I(RAW)(  ) ∝ 1 −     + (−4  + 3  )  +(−6  + 17  − 13  + 3  )  + (−3  +15  − 23  + 14   − 3   )   (15i) 
 I(RAW)(  ) ∝ 1 −     + (−3  +   )  +(−8  + 12  − 3  )  + (−8  + 39  −
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41  + 12   )  + (−4  + 43  − 118   +129   − 62   + 11   )   (15j) 
 I(RAW)(  ) ∝ 1 − 2    + (−4  + 5  −2  )  + (−8  + 13  − 2  )  +(−10  + 45  − 52  + 16   )  +(−4  + 32  − 85   + 95   − 46   +8   )   (15k) 
 I(RAW)(  ) ∝ 1 − 2    + (−5  + 6  −2  )  + (−9  + 16  − 8  + 2  )  +(−9  + 52  − 67  + 31   − 5   )  +(−  + 25  − 85   + 103   − 53   +10   )   (15l) 
 I(RAW)(  ) ∝ 1 − 2    + (−4  + 6  −2  )  + (−5  + 12  − 8  + 2  )  +(−6  + 29  − 42  + 24   − 5   )  +(−3  + 23  − 54   + 56   − 27   +5   )   (15m) 
 I(RAW)(  ) ∝  1 − 3    + (−5  + 4  )  +(−8  + 23  − 10  )  + (−7  + 48  −79  + 43   − 7   )  + (−  + 20  −73   + 98   − 55   + 11   )   (15n) 
 I(RAW)(  ) ∝  1 − 2    + (−6  + 3  )  +(−8  + 21  − 7  )  + (−7  + 42  −56  + 19   )  + (−3  + 40  − 123   +148   − 76   + 14   )   (15o) 
 I(RAW)(  ) ∝ 1 − 3    + (−5  + 7  −2  )  + (−6  + 13  − 4  )  + (−7  +36  − 45  + 15   )  + (−3  + 40  −115   + 132   − 66   + 12   )   (15p) 
 I(RAW)(  ) ∝ 1 − 3    + (−6  + 8  −2  )  + (−7  + 24  − 19  + 5  )  +(−6  + 30  − 45  + 25   − 5   )  +(−4  + 37  − 96   + 106   − 53   +10   )    (15q) 
 I(RAW)(  ) ∝ 1 − 3    + (−7  + 8  −2  )  + (−7  + 28  − 21  + 5  )  +(−5  + 36  − 67  + 44   − 10   )  +(−2  + 17  − 52   + 67   − 38   +8   )   (15r) 
 I(RAW)(   ) ∝ 1 − 2    + (−5  + 4  )  +(−5  + 17  − 9  )  + (−6  + 34  −

58  + 36   − 7   )  + (−2  + 20  −55   + 65   − 35   + 7   )    (15s) 
 I(RAW)(   ) ∝ 1 − 2    + (−6  + 5  )  +(−8  + 21  − 10  )  + (−7  + 41  −66  + 38   − 7   )  + (−3  + 26  −68   + 76   − 38   + 7   )   (15t) 
 I(RAW)(   ) ∝ 1 −     + (−5  + 3  )  +(−10  + 23  − 15  + 3  )  + (−9  +41  − 48  + 21   − 3   )  + (−3  +24  − 65   + 71   − 34   + 6   )  
 (15u) 
 I(RAW)(   ) ∝ 1 − 3    + (−7  + 9  −2  )  + (−7  + 26  − 21  + 5  )  +(−3  + 27  − 52  + 35   − 8   )  +(8  − 31   + 42   − 24   + 5   )  
 (15v) 
 I(RAW)(   ) ∝ 1 −     + (−4  + 3  )  +(−8  + 17  − 13  + 3  )  + (−8  +34  − 37  + 17   − 3   )  + (−3  +35  − 92   + 96   − 45   + 8   )  .
 (15w) 
 
One can then evaluate the ranking when the 
steady-state availabilities are taken into account. 
The corresponding values are listed in Table 3. 
The variations of the RAW factors are also dis-
played in Figures 6 and 7, when either the nodes 
or links’ availabilities take their steady-state val-
ues. As already seen for the Birnbaum index, the 
rankings do not change much when   and   
change. There are simply groups of components 
of comparable importance. 
 

 
 
 

Figure 6. RAW factors for  =   = 0.91.  
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Figure 7. RAW factors for  =   = 0.85.  
 
Table 3. Risk Achievement Worth index for steady-
state availabilities (0.85 for links and 0.91 for nodes) 
 

Component RAW importance factor    1    1    0.56265458840743836058    0.52079623716622712272    0.51107023230562998637    0.50904015361555415963     0.47085270768088990497    0.46776036344095957103    0.46288536877514914449    0.45920940467183947316    0.44990784329034020556     0.43872261179606081247     0.42012326773869959074    0.39762995088768809577     0.38608340080810192791    0.37191450469664859577    0.36811886328990831067    0.34934570491243548530    0.34841785779471720118     0.34800699946576249031    0.34653599701191888300    0.34190590983407432967    0.33828949528041120105 
 
One observes that the order of components is 
nearly the same as for the Birnbaum index, the 
node    gaining two places: 
   ,  ,  ,   ,  ,  ,   ,  ,   ,  ,  ,   ,     ,  ,   ,  ,  ,  ,  ,   ,  ,  ,  . 
 
4.3. Risk Reduction Worth  
 

The Risk Reduction Worth (RRW) is inversely 
proportional to the unavailability of the system 
when element   works perfectly (Rausand & Høy- 

land, 2004), so that (omitting the common prefac-
tor 1 −  Rel2(  →  )) 
 I(RRW)( ) ∝ 1/(1 −  Rel2(  →  ; 1 )).  (16) 
 
One can derive again lengthy expressions when 
individual availabilities are kept throughout the 
calculations. With two families of identical nodes 
and links, simpler expressions similar to equations 
(13a) to (13w) are obtained; they read 
 1/I(RRW)(  ) ∝ 1 − 3    + (−8  + 9  −2  )  + (−13  + 38  − 25  + 5  )  +(−14  + 89  − 151  + 94   −20   )  + (−6  + 78  − 278   +428   − 326   + 122   − 18   )   (17a) 
 1/I(RRW)(  ) ∝ 1 − 3    + (−8  + 9  −2  )  + (−13  + 38  − 25  + 5  )  +(−14  + 89  − 151  + 94   −20   )  + (−6  + 78  − 278   +428   − 326   + 122   − 18   )   (17b) 
 1/I(RRW)(  ) ∝ 1 − 2    + (−  − 7  +9  − 2  )  + (−  − 10  + 34  −25  + 5  )  + (−3  − 8  + 78  −138  + 90   − 20   )  + (−2  + 5  +65  − 274   + 428   − 326   +122   − 18   )   (17c) 
 1/I(RRW)(  ) ∝ 1 −     + (−2  − 4  +6  − 2  )  + (−4  − 6  + 24  −18  + 5  )  + (−4  + 3  + 59  −106  + 63   − 13   )  + (−3  + 17  +33  − 247   + 421   − 326   +122   − 18   )   (17d) 
 1/I(RRW)(  ) ∝ 1 −     + (−2  − 6  +4  )  + (−2  − 6  + 34  − 25  +5  )  + (−2  − 10  + 82  − 144  +92   − 20   )  + (−2  +   + 71  −276   + 428   − 326   + 122   −18   )   (17e) 
 1/I(RRW)(  ) ∝ 1 − 2    + (−  − 5  +7  − 2  )  + (−3  − 8  + 31  −22  + 5  )  + (−3  − 6  + 81  −145  + 92   − 20   )  + (−  −   +72  − 276   + 428   − 326   +122   − 18   )   (17f) 
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1/I(RRW)(  ) ∝ 1 −     + (−2  − 4  +3  )  + (−4  − 3  + 25  − 17  +3  )  + (−4  + 61  − 115  + 72   −15   )  + (−3  + 14  + 44  − 256   +423   − 326   + 122   − 18   )   (17g) 
 
1/I(RRW)(  ) ∝ 1 + (−3  − 2  +   )  +(−6  −   + 15  − 6  )  + (−4  +7  + 62  − 123  + 75   − 15   )  +(2  + 55  − 259   + 423   − 326   +122   − 18   )   (17h) 
 
1/I(RRW)(  ) ∝ 1 − 2    + (−  − 4  +6  − 2  )  + (−4  − 4  + 21  −12  + 2  )  + (−6  + 6  + 61  −125  + 80   − 17   )  + (−3  + 9  +55  − 264   + 425   − 326   +122   − 18   )   (17i) 
 1/I(RRW)(  ) ∝ 1 + (−2  −   )  + (−5  +5  −   )  + (−5  + 18  − 10  +2  )  + (−6  + 42  − 71  + 41  −8   )  + (−2  + 31  − 117  + 181   −135   + 49   − 7   )   (17j) 
 1/I(RRW)(  ) ∝ 1 + (−  − 2  )  + (−4  +5  − 2  )  + (−5  + 17  − 10  +3  )  + (−4  + 34  − 54  + 26  −4   )  + (−2  + 42  − 161  + 248   −185   + 68   − 10   )   (17k) 
 1/I(RRW)(  ) ∝ 1 + (−  − 2  )  + (−3  −2  + 6  − 2  )  + (−4  + 13  −   −5  + 2  )  + (−5  + 28  − 32  −4  + 16   − 5   )  + (−5  + 52  −168  + 240   − 170   + 59   − 8   )  
 (17l) 
 1/I(RRW)(  ) ∝ 1 + (−  − 2  )  + (−4  −  + 6  − 2  )  + (−8  + 21  − 5  −5  + 2  )  + (−8  + 54  − 80  +28  + 9   − 5   )  + (−3  + 52  −201  + 318   − 243   + 90   −13   )   (17m) 
 1/I(RRW)(  ) ∝  1 − 3    + (−3  +2  )  + (−5  + 7  + 8  − 5  )  +(−7  + 34  − 24  − 28  + 30   −7   )  + (−5  + 57  − 185  + 257   −173   + 56   − 7   )   (17n) 

1/I(RRW)(  ) ∝  1 + (−  − 2  )  + (−2  +  )  + (−5  + 9  + 3  − 2  )  +(−7  + 40  − 53  + 19  −    )  +(−3  + 35  − 115  + 157   − 102   +32   − 4   )   (17o) 
 1/I(RRW)(  ) ∝ 1 − 3    + (−3  − 3  +7  − 2  )  + (−7  + 19  − 8  +  )  + (−7  + 46  − 70  + 34  −5   )  + (−3  + 35  − 123  + 181   −128   + 44   − 6   )   (17p) 
 1/I(RRW)(  ) ∝ 1 − 3    + (−2  − 5  +8  − 2  )  + (−6  + 7  + 18  −19  + 5  )  + (−8  + 53  − 76  +24  + 10   − 5   )  + (−2  + 37  −145  + 226   − 167   + 59   − 8   )  
 (17q) 
 1/I(RRW)(  ) ∝ 1 − 3    + (−  − 6  +8  − 2  )  + (−6  + 3  + 24  −21  + 5  )  + (−9  + 48  − 48  −17  + 34   − 10   )  + (−4  + 59  −209  + 309   − 221   + 76   −10   )   (17r) 
 1/I(RRW)(   ) ∝ 1 + (−  − 2  )  +(−3  + 2  )  + (−8  + 16  +   −4  )  + (−8  + 49  − 59  + 23   −7   )  + (−4  + 56  − 203  + 308   −226   + 80   − 11   )    (17s) 
 1/I(RRW)(   ) ∝ 1 + (−  − 2  )  +(−2  − 2  + 3  )  + (−5  + 9  +6  − 5  )  + (−7  + 41  − 44  −10  + 25   − 7   )  + (−3  + 49  −184  + 284   − 212   + 77   −11   )   (17t) 
 1/I(RRW)(   ) ∝ 1 + (−2  −   )  +(−3  +   +   )  + (−3  + 5  + 13  −13  + 3  )  + (−5  + 39  − 62  +25  + 4   − 3   )  + (−3  + 51  −189  + 292   − 221   + 82   −12   )   (17u) 
 1/I(RRW)(   ) ∝ 1 − 3    + (−  − 7  +9  − 2  )  + (−6  + 5  + 22  −21  + 5  )  + (−11  + 59  − 72  +7  + 23   − 8   )  + (−6  + 70  −
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239  + 355   − 260   + 93   −13   )   (17v) 
 1/I(RRW)(   ) ∝ 1 + (−2  −   )  +(−4  + 2  +   )  + (−5  + 13  +5  − 11  + 3  )  + (−6  + 47  −80  + 40  − 3   )  + (−3  + 40  −151  + 240   − 185   + 69   −10   )  . (17w) 
 
The corresponding values are listed in Table 4 
when the steady-state availabilities are taken into 
account. The variations of the RRW factors are 
displayed in Figures 8 and 9, when one of the 
nodes or links’ availabilities takes its steady-state 
value. Here again, the variation in rankings do not 
change much with   and  . Components of com-
parable importance come in groups. 
 
Table 4. Risk Reduction Worth index for steady-state 
availabilities (0.85 for links and 0.91 for nodes) 
 

Component RRW importance factor    3.9052323127976881318    3.9052323127976881318     3.3677664038955527548    3.3518949037359805525    3.3446224479672253385    3.3408987502793014142     3.3046628992354096887    3.2953218912037175271    3.2849093476298736721    3.2827442652289020558     3.2692028773907447531    3.2393301590606858029    3.2273225489277682830    3.2209082675792041710     3.2062380775632912257    3.1807385526134531842    3.1409489458363941740    3.1393344117655980623    3.1391216199070682353     3.1386200129119401608    3.1360649034374827045    3.1280495962004320680    3.1218175353137047655 
 
One observes that the order of components has 
changed again with respect to the Birnbaum and 
RAW indices, and that the values are closer to 
each other. A few links gain places: 
   ,  ,   ,  ,  ,   ,   ,  ,  ,  ,   ,  ,    ,  ,   ,  ,  ,  ,  ,   ,  ,  ,  . 

 
 

Figure 8. RRW factors for  =   = 0.91. 
 
 

 
 

Figure 9. RRW factors for  =   = 0.85. 
 
4.4. Time variation of performance indices 
 

From the preceding Sections, one can observe that 
different performance indices may provide differ-
ent results. However, within a given family (nodes 
or links), the rankings remain essentially un-
changed, even when   and   change. One can 
therefore only expect a marginal influence of tran-
sient availabilities on the relative ranking of nodes 
and of links within their own categories. The rel-
ative influence of nodes and links will be ad-
dressed in the next Section. 
 
4.5. Word of caution about uncertainties on 

effective failure and repair rates 
 

Effective failure and repair rates are seldom 
known exactly. An uncertainty of 30% on the fail-
ure rates, and 15% on the repair rates would lead 
to uncertainties on the steady-state values given in 
(1) and (2); one should have instead 
 0.7875 ≤   ≤  0.9030, (18) 
 0.8686 ≤   ≤  0.9432. (19) 
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Considering uniform distributions of   and   in 
these intervals for each of the network’s elements, 
one obtains performance indices in which the as-
sumption of identical nodes/links is relaxed. For 
instance, the Birnbaum index’s rank of the first 
link (  ) is displayed in Figure 10 for a set of 
50000 samples.  
 

 
 

Figure 10. Histogram of the Birnbaum ranking for 
the first link (  ) in the case of uncertainty over the 
steady-state availabilities (see (18) and (19)). 
 
Even with such a limited uncertainty, it lies be-
tween 4 and 13. This should be kept in mind when 
proposing maintenance or resilience policies in 
network operations. 
 
5. Relative influence of links and nodes  

on total unavailability 
 

We have seen in the previous Sections that the 
ranks of nodes or edges of the network do not sub-
stantially vary for various performance indices. It 
does not mean, however, that transient effects 
cannot be crucial, as already shown in (Eid, 2021; 
Tanguy, 2022a). It is worthwhile to assess the rel-
ative importance of edges and nodes on the total 
unavailability, and investigate whether it varies 
with time. From equations (10) to (12), we have 
in steady-state 
 (  )nodes(  )total  = 0.62947776698761495023, (20) 
 (  )links(  )total  = 0.19779257730620277452. (21) 
 
This shows that the main contribution to the total 
availability comes from nodes. We now have to 
check that such a claim is not invalidated at 
shorter times. 
 

5.1. Case of exponential distributions  
 

When all the failure and repair rates obey expo-
nential distributions,  ( ) and  ( ) are given by 
(4) and (5). Using equations (7), (8), and (9), it is 
possible to plot the variations with time of the two 
ratios, displayed in Figure 11. 
 

 
 

Figure 11. Time variation of the unavailability ratios 
for nodes (blue) and links (violet) for exponential dis-
tributions. 
 
The striking feature of Figure 11 is that the ratios 
of unavailabilities strongly change during the mis-
sion time. The conclusion derived from the use of 
steady-state values may therefore be misleading: 
links actually may contribute more to the total un-
availability. 
 
5.2. Case of gamma ( =  ) failure  

distributions 
 

When all the failure times follow gamma distribu-
tion with  = 2, it is possible to calculate analyt-
ically the exact values of  ( ) and  ( ): 
  ( ) =  85100 + 15100            
 ∙  cos  √         +   √    sin  √          ,  (22) 
  ( ) =  91100 +  9100               
 ∙  20 cosh  √            +    √     sinh  √             .  (23) 
 
Using (22) and (23) in equations (7), (8), and (9), 
one can plot the variations with time of the two 
ratios, as shown in Figure 12. 
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Figure 12. Time variation of the unavailability ratios 
for nodes (blue) and links (violet) for failure time 
gamma distribution with  = 2. 
 
5.3. Case of gamma ( links =   ,  nodes =   ) 

failure distributions 
 

When the failure times follow gamma distribution 
with  links = 20 and  nodes = 10, it is still possi-
ble (Tanguy et al., 2019) to express analytically  ( ) and  ( ), now given by  
  ( ) = 0.85 +     .        (0.310984 cos(0.0836738  )  +      0.0473057 sin(0.0836738  ))  +      .          (−0.293937 cos(0.15934  )  +      0.103769 sin(0.15934  ))  +      .        (0.283138 cos(0.243529  )  +      0.137739 sin(0.243529  ))  +      .         (−0.260862 cos(0.308935  )  +      0.187246 sin(0.308935  ))  +      .         (0.229916 cos(0.381574  )  +      0.216012 sin(0.381574  ))  +      .         (−0.199202 cos(0.432857  )  +      0.253279 sin(0.432857  ))  +      .        (0.156045 cos(0.485426  )  +      0.275241 sin(0.485426  ))  +      .         (−0.118065 cos(0.51825  )  +      0.298392 sin(0.51825  ))  +      .         (0.0680901cos(0.545738  )  +      0.310262 sin(0.545738  ))  +      .        (−0.0261074 cos(0.55704  )  + 0.318121 sin(0.55704  )) (24) 
  ( ) =  0.91 +    .          (0.172709 cos(0.00253813  ) +0.0507124 sin(0.00253813  )) +   .           (−0.151426 cos(0.00487063  ) +0.0973163 sin(0.00487063  )) +   .          (0.117875 cos(0.00680855  ) +

0.136036 sin(0.00680855  )) +   .           (−0.0747747 cos(0.00819487  ) +0.163735 sin(0.00819487  )) +   .          (0.0256167 cos(0.0089173  ) +0.17817 sin(0.0089173  )) (25) 
 

 
 

Figure 13. Time variation of the unavailability ratios 
for nodes (blue) and links (violet) for failure time 
gamma distribution ( links = 20 and  nodes = 10). 
 
5.4. Time behaviors of aggregate  

unavailabilities 
 

As Figure 13 exhibits oscillations, it is worth in-
vestigating the time dependence of all three una-
vailabilities defined in (7), (8), and (9). The vari-
ous configurations corresponding to Sections 5.1, 
5.2, and 5.3 are displayed in Figures 14 to 16. 
While in the first two cases the unavailabilities in-
crease with time and reach their long-time limits 
from below, in the last case, there are overshoots. 
This means that the steady-state values of  total,  links, and  nodes underestimate the true one dur-
ing the mission time. 
 

 
 

Figure 14. Time variation of  total for different  
configurations: exponentials (orange); gamma  
( = 2) (green); ( links = 20 and  nodes = 10)  
(violet); the steady-state limit is the black dashed line. 
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Figure 15. Time variation of  links for different  
configurations: exponentials (orange); gamma  
( = 2) (green); ( links = 20 and  nodes = 10)  
(violet); the steady-state limit is the black dashed line. 
 

 
 

Figure 16. Time variation of  nodes for different  
configurations: exponentials (orange); gamma  
( = 2) (green); ( links = 20 and  nodes = 10)  
(violet); the steady-state limit is the black dashed line. 
 
The lesson to be learned is that it is not always 
safe to consider the steady-state availabilities of 
components to assess the end-to-end availability 
of a system, all the more so in the first phases of 
operation (the mission time). 
 
6. All-terminal reliability of Walter  

configuration 
 

For the sake of comparison with the two-terminal 
availability results given in the preceding Sec-
tions, we now consider the all-terminal availabil-
ity for the same configuration shown in Figure 1. 
Similar studies on another configuration have al-
ready been performed (Eid, 2021; Tanguy, 
2022a), where the all-terminal availability has 
been shown to attain values smaller than its steady 
state-limit. 
 

6.1. All-terminal availabilities 
 

The probability that all nodes of the systems are 
connected implies that all nodes must be opera-
tional. This means that the all-terminal reliability 
or availability can be factorized as follows 
 RelA(total) =  RelA(links) RelA(nodes)  (26) 
 RelA(nodes) is very simple, since it corresponds 
to a series system 
 RelA(nodes) =                            . 
 (27) 
 
The calculation of RelA(links) is more compli-
cated. When individual availabilities are consid-
ered (from    to    ), the final expression totals 
2856 terms. Assuming that all links are identical 
leads to a much simpler formula 
 RelA(links) =  647  − 2862  + 5360   −5430   + 3134   − 976   + 128    (28) 
 
For identical nodes, (27) reduces to 
 RelA(nodes) =    . (29) 
 
6.2. Steady-state unavailabilities 
 

Here again it may be simpler to deal with the all-
terminal unavailability   = 1 −  RelA, instead of RelA. Considering the steady-state values for 
nodes and links given in (1) and (2), we find (the 
subscripts ∞ indicate the steady-state value) 
    ,  total = 0.60498385816355262, (30) 
 
whereas  
    ,  links = 0.076913686037659746, (31) 
    ,  nodes = 0.5720701998702116. (32) 
 
These values, larger than those in (10)–(12) since 
it is more difficult to ensure that all nodes are con-
nected instead of a single pair of them, show that 
nodes contribute again to a greater unavailability 
of the system at very long times. 
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6.3. Birnbaum importance factor 
 

For the all-terminal availability, the Birnbaum im-
portance factor is necessarily the same for identi-
cal nodes, because of (26) and (27). Consequently, 
only the links’ ranking will be considered in what 
follows. From the exact expression of the all-ter-
minal availability, one gets the Birnbaum im-
portance factors, the list of which is given below 
for the sake of completeness and for comparison 
with equations (13) in Section 4.1. Note that the 
common factor    has been omitted, since it does 
not affect the relative ranking of links. 
 I(B)(  ) = 400  − 1948  + 3983  −4377   + 2726   − 912   + 128    (33a) 
 I(B)(  ) = 367  − 1845  + 3863  −4315   + 2714   − 912   + 128    (33b) 
 I(B)(  ) = 364  − 1819  + 3796  −4239   + 2674   − 904   + 128    (33c) 
 I(B)(  ) =  440  − 2115  + 4261  −4608   + 2822   − 928   + 128    (33d) 
 I(B)(  ) = 306  − 1574  + 3384  −3894   + 2530   − 880   + 128     (33e) 
 I(B)(  ) =  295  − 1536  + 3335  −3866   + 2524   − 880   + 128    (33f) 
 I(B)(  ) =  312  − 1611  + 3466  −3979   + 2572   − 888   + 128    (33g) 
 I(B)(  ) =  343  − 1733  + 3655  −4123   + 2626   − 896   + 128     (33h) 
 I(B)(  ) =  351  − 1760  + 3689  −4142   + 2630   − 896   + 128    (33i) 
 I(B)(   ) =  400  − 1948  + 3983  −4377   + 2726   − 912   + 128    (33j) 
 I(B)(   ) =  365  − 1834  + 3843  −4300   + 2710   − 912   + 128    (33k) 
 I(B)(   ) =  416  − 2042  + 4178  −4566   + 2814   − 928   + 128    (33l) 
 I(B)(   ) =  377  − 1878  + 3903  −4336   + 2718   − 912   + 128    (33m) 

I(B)(   ) = 440  − 2115  + 4261  −4608   + 2822   − 928   + 128   . (33n) 
 
We can rank the 14 links according to the Birn-
baum index when the availabilities have their 
steady-state values, deduced from (1), 0.85. The 
list, by decreasing importance, is 
    ,  ,   ,  ,   ,   ,  ,  ,   ,   ,  ,  ,  ,  .  
 
Note that the ordering of the fourteen links is not 
the same as for the two-terminal availability case 
in Section 4.1. However, the changes are mar-
ginal, since the same groups of links aggregate at 
the beginning and at the end of the lists.  
 
6.4. RAW and RRW performance indices 
 

It is possible to compute the Risk Achievement 
Worth and the Risk Reduction Worth without any 
difficulty. Their expression are not given here, it 
turns out that the ranking of all links is exactly the 
same as that for the Birnbaum index.  
 
6.5. Fussell-Vesely performance index 
 

By definition, the Fussell-Vesely performance in-
dex is the probability that at least one minimal 
cutset containing element   fails (Pr (  )), pro-
vided that the whole system fails. In the notation 
of (Rausand & Høyland, 2004), namely  Pr( ) ≡    ,  
 I(FV)(  ) =     (  )   ( )  . (34) 
 
The calculations of these indices are more in-
volved, since they cannot be directly obtained 
from the availability expression (formally similar 
to the structure function). One must first start to 
identify the minimal cutsets, which is another po-
tentially complex task, especially when the num-
ber of system elements increases. Here, there are 
75 minimal cutsets: 
 {  ,   }, {  ,   }, {  ,  ,   }, {  ,   ,   }, {  ,  ,   }, {  ,  ,   }, {  ,  ,   }, {  ,  ,  }, {  ,  ,   }, {  ,  ,   }, {  ,   ,   }, {   ,   ,   }, {  ,  ,  ,  }, {  ,  ,  ,   }, {  ,  ,  ,  }, {  ,  ,   ,   }, {  ,  ,   ,   }, {  ,  ,   ,   }, {  ,  ,  ,   }, {  ,  ,   ,   }, 
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{  ,  ,   ,   }, {  ,  ,  ,   }, {  ,  ,   ,   }, {  ,  ,  ,  ,   }, {  ,  ,  ,   ,   }, {  ,  ,  ,  ,   }, {  ,  ,   ,  ,  }, {  ,  ,  ,  ,   }, {  ,  ,  ,  ,   }, {  ,  ,  ,   ,   }, {  ,  ,   ,   ,   }, {  ,  ,  ,  ,  ,  }, {  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,   ,   }, {  ,  ,  ,   ,   ,   }, {  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,  ,  }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,  ,  }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,   ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,   ,  ,  ,  ,  }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,   ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,   ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,   ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,   ,   ,   }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,   ,   ,   }, {  ,  ,  ,  ,   ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,   ,   ,   }, {  ,  ,  ,  ,  ,   ,   }, {  ,  ,  ,  ,  ,  ,   }, {  ,  ,  ,  ,  ,   ,   }. 
 
The numbers of cutsets to which the link corre-
sponding to    occurs are respectively 23, 10, 29, 
24, 41, 53, 57, 36, 33, 23, 19, 10, 35, and 24 for   ,   ,…,    . One then has to compute the prob-
abilities Pr (  ), which are given by the polyno-
mials in equations (35a) to (35n): 

I(FV)(  ) ∝ 1 −  − 5  + 9  +   − 11  −4  + 37  − 47  + 15   + 22   −27   + 12   − 2    (35a) 
 I(FV)(  ) ∝ 1 −  −   +   + 8  − 9  −8  + 5   + 20   − 26   + 12   − 2   
 (35b) 
 I(FV)(  ) ∝ 1 −  − 4  + 5  + 3  − 10  +13  − 2  − 20  + 17   + 10   −21   + 11   − 2    (35c) 
 I(FV)(  ) ∝ 1 −  − 7  + 15  − 10  +12  − 20  + 3   + 24   − 27   +12   − 2    (35d) 
 I(FV)(  ) ∝ 1 −  −   − 4  + 11  − 3  −8  − 2  + 33  − 58  + 45   − 6   −15   + 10   − 2    (35e) 
 I(FV)(  ) ∝ 1 −  − 2  +   + 2  −   +2  + 4  − 14  + 3  + 9   + 4   −16   + 10   − 2    (35f) 
 I(FV)(  ) ∝ 1 −  −   −   + 5  + 3  −6  − 6  +   + 9   + 4   − 16   +10   − 2    (35g) 
 I(FV)(  ) ∝ 1 −  − 5  + 7  + 3  − 11  +13  − 8  − 5  + 3   + 16   − 22   +11   − 2    (35h) 
 I(FV)(  ) ∝ 1 −  − 4  + 2  + 15  −25  + 13  + 12  − 28  + 14   +14   − 22   + 11   − 2    (35i) 
 I(FV)(   ) ∝ 1 −  − 5  + 9  +   − 11  −4  + 37  − 47  + 15   + 22   −27   + 12   − 2    (35j) 
 I(FV)(   ) ∝ 1 −  −   −   + 3  − 3  +6  +   − 16  + 7   + 20   − 26   +12   − 2    (35k) 
 I(FV)(   ) ∝ 1 −  −   − 2  +   + 7  +  − 7  − 8  + 5   + 20   − 26   +12   − 2    (35l) 
 I(FV)(   ) ∝ 1 −  −   − 7  + 18  −10  −   + 6  − 17  + 13   + 11   −21   + 11   − 2    (35m) 
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I(FV)(   ) ∝ 1 −  − 7  + 15  − 10  +12  − 20  + 3   + 24   − 27   +12   − 2   . (35n) 
 
The values of the Pr(  ) /(1 −  )  are displayed 
in Figure 17. The modifications of ranks when   
is modified are marginal, apart from those of     
and   , the importance of which decreases when   goes below 0.6. 
 

 
 

Figure 17. Pr(  ) /(1 −  )  values for  = 0.91.  
 
Another noteworthy result is that, by contrast to 
what occurs for the two-terminal availability, the 
importance list of the links when  = 0.85 is ex-
actly the same as that of Birnbaum, RAW, and 
RRW given in Section 6.3. This makes the cum-
bersome calculations of the Fussell-Vesely index 
of performance appear of limited interest, all the 
more so in not so small systems. 
 
6.6. Relative influence of links and nodes on 

total all-terminal unavailability 
 

One can perform for the all-terminal availability 
the same calculations of the relative roles of nodes 
and links on the total availability, as performed in 
Section 5. The results are displayed in Figures 18 
to 20, and the all-terminal unavailabilities are 
again denoted by  total,  links, and  nodes in order 
to shorten the notations. Note that the asymptotic 
limits are well separated at 0.127133451578582 
for the links, and 0.945595807476167 for the 
nodes. When the failure and repair time distribu-
tions are exponentials (Figure 18), there is no 
crossing between the two curves. When gamma 
distributions are considered, the behaviours ob-
served for the two-terminal availability (see Fig-
ures 12 and 13) reappear. Our conclusion is that 
for the two- or all-terminal availabilities, great 
caution should be exercised when identifying 

weak elements of the system based only on    
and   . 
 

 
 

Figure 18. Time variation of the unavailability ratios 
for nodes (blue) and links (violet) for exponential  
distributions and the all-terminal availability case. 
 

 
 

Figure 19. Time variation of the unavailability ratios 
for nodes (blue) and links (violet) for failure time 
gamma distribution with  = 2 and the all-terminal 
availability case. 
 

 
 

Figure 20. Time variation of the unavailability ratios 
for nodes (blue) and links (violet) for failure time 
gamma distribution ( links = 20 and  nodes = 10) 
and the all-terminal availability case. 
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6.7. Time behaviours of aggregate  
unavailabilities 

 

In this Section, we study, as in Section 5.4, how 
the stationary regime is reached for various failure 
time distributions. The results are displayed on 
Figures 21 to 23.  
 

 
 

Figure 21. Time variation of  total for different  
configurations: exponentials (orange); gamma  
( = 2) (green); ( links = 20 and  nodes = 10)  
(violet); the steady-state limit is the black dashed line. 
 

 
 

Figure 22. Time variation of  links for different  
configurations: exponentials (orange); gamma  
( = 2) (green); ( links = 20 and  nodes = 10)  
(violet); the steady-state limit is the black dashed line. 
 

 
 

Figure 23. Time variation of  nodes for different  
configurations: exponentials (orange); gamma  
( = 2) (green); ( links = 20 and  nodes = 10)  
(violet); the steady-state limit is the black dashed line. 

One can observe the same behaviours as those ob-
served for the two-terminal availability. The con-
clusions to be drawn are therefore the same: tran-
sient effects may be important and should not be 
cursorily overlooked. They might indeed lead to 
underestimates to the true unavailability of sys-
tems. 
 
7. Conclusion 
 

We have considered a meshed network proposed 
by Walter, Esch, and Limbourg (Walter et al., 
2008), for which the performance measure is the 
end-to-end availability between a source and a 
destination. The exact expression of this availabil-
ity has been obtained for arbitrary components’ 
availabilities, which allowed the assessment of 
several performance indices such as Birnbaum, 
Risk Achievement Worth, Risk Reduction Worth, 
and Fussell-Vesely in order to know on which el-
ement(s) of the system maintenance and resilience 
practitioners should focus their attention.  
Our most important result has been to demonstrate 
that transient effects can be significant. Mainte-
nance and resilience studies often use the steady-
state values of each element’s availability. In the 
cases of non-steady-state availabilities and non-
exponential failure distributions, the connection 
unavailability may be temporarily higher than its 
steady-state value. At different instants of the mis-
sion time, nodes and links could alternatively be 
held responsible for a majority of outages. The 
lesson learned from the present study is that there 
is no fixed guilty party. Great caution should 
therefore be exercised when trying to optimize the 
operation of a system without considering transi-
ent effects, which should not be overlooked. 
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