Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Essentials of the Riemann-Liouville fractional calculus are recalled. Nonlocal generalizations of the Fourier law of the classical theory of heat conduction relating the heat flux vector to the temperature gradient and of the Fick law of the classical theory of diffusion relating the matter flux vector to the concentration gradient lead to non-classical theories. The time-nonlocal dependence between the flux vectors and corresponding gradients with “long-tale” power kernel can be interpreted in terms of fractional integrals and derivatives and yields the time-fractional diffusion equation.
Rocznik
Tom
Strony
97--100
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Institute of Mathematics and Computer Science Jan Długosz University of Częstochowa Armii Krajowej 13/15, 42-201 Częstochowa, Poland
Bibliografia
- [1] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993.
- [2] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
- [3] M. Caputo. Linear models of dissipation whose Q is almoust frequency independent, Part II. Geophys. J. Roy. Astron. Soc. 13, 529539, 1967.
- [4] R. Goreno, F. Mainardi. Fractional calculus and stable probability distributions. Arch. Mech. 50, 377388, 1998.
- [5] Y.Z. Povstenko. Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28, 83102, 2005.
- [6] Y.Z. Povstenko. Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation. Int. J. Engng Sci. 43, 977991, 2005.
- [7] Y.Z. Povstenko. Two-dimensional axisymmentric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solids Struct. 44, 2324-2348, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28ad4153-b64b-40cc-bc23-7992ef152d93