Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigated the influence of silver nanoparticles (AgNPs) on the mechanical and antibacterial properties of polycarbonate (PC) and high-density polyethylene (HDPE) composites reinforced with glass (GF), basalt (BF), carbon (CF), and cellulose (CEL) fibres. The mechanical properties of the composites were rigorously assessed by quantifying parameters such as impact strength, tensile strength, and elongation at break. This evaluation was performed in strict adherence to ASTM standards, ensuring reliability and consistency of the obtained data. The results demonstrated that fibre reinforcements enhanced the tensile strength of the composites, but resulted in reductions in both impact strength and elongation at break, particularly in composites containing cellulose. The addition of AgNPs further decreased impact strength and elongation at break, while slightly reducing tensile strength. The antimicrobial properties were evaluated using bacterial strains Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Composites reinforced with glass fibre and AgNPs exhibited the highest antimicrobial efficacy compared to those containing AgNPs combined with cellulose, carbon, or basalt fibres. These findings suggest that while AgNPs enhance the antimicrobial properties, they may compromise the mechanical integrity of fibre-reinforced composites. The study contributes to the development of advanced composites with multifunctional properties for medical, sports, aerospace, construction, and engineering applications.
Czasopismo
Rocznik
Tom
Strony
art. no. 8
Opis fizyczny
Bibliogr. 25 poz., tab., zdj.
Twórcy
autor
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
autor
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
autor
- Spyra Prime Sp. z o.o., Przelotowa 33, 43-190 Mikołów, Poland
autor
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
autor
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland
autor
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland
Bibliografia
- [1] Khan M.A., Riaz S., Ali I., Akhtar M.N., Murtaza G., Ahmad M., Shakir I., Warsi M.F.: Structural and magnetic behavior evaluation of Mg–Tb ferrite/polypyrrole nanocomposites. Ceram. Int. 41 (1, Part A) (2015) 651–656.
- [2] Li X., Si H., Niu J.Z, Shen H., Zhou C., Yuan H., Wang H., Ma L., Li L.S.: Size-controlled syntheses and hydrophilic surface modification of Fe3O4, Ag, and Fe3O4/Ag heterodimer nanocrystals, Dalton Trans. 39 (45) (2010) 10984–10989.
- [3] Palza H.: Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 16 (2015) 2099–2116.
- [4] Nasar G., Khan M.S., Khalil U.: A study on structural, mechanical and thermal properties of polymer composites of poly(vinyl alcohol) with inorganic material. Macromol. Symp. 298 (1) (2010) 124–129.
- [5] Zhang R., Lin W., Moon K., Wong C. P.: Fast Preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles, ACS Appl. Mater. Interfaces 2 (9) (2010) 2637–2645.
- [6] Li W.-R., Xie X.B., Shi Q.S., Zeng H.Y.: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85 (2010) 1115–1122.
- [7] Tran Q.H., Van Nguyen Q., Le A.: Silver nanoparticles. Adv. Natl. Sci. Nanosci. Nanotechnol. 4 (2013) 33001–33021.
- [8] Abdelwahab N.A., Shukry N.: Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr. Polym. 115 (2015) 276–284.
- [9] Fiore V., Scalici T., Di Bella G., Valenza A.: A review on basalt fibre and its composites. Composites Part B: Engineering, 74 (2015) 74–94
- [10] Chowdhury I.R., Pemberton R., Summerscales J.: Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. J. Compos. Sci. 6 (2022) 367.
- [11] Lopresto V., Leone C., De Iorio I.: Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering 42(4) (2011) 717–723.
- [12] Wu D., Jing L., Peng S., Jing W.A.: Study on the Mechanical Properties of Glass-Fiber-Reinforced Defective Gypsum Boards. Sustainability 16 (2024) 821.
- [13] Morampudi P., Namala K.K., Gajjela Y.K., Barath M., Prudhvi G.: Review on glass fiber reinforced polymer composites. Materials Today: Proceedings 43 (2020) 314–319.
- [14] Stickel J.M., Nagarajan M.: Glass Fiber-Reinforced Composites: From Formulation to Application. International Journal of Applied Glass Science 3(2) (2012) 122–136.
- [15] Abdul Khalil, H.P.S., Bhat A.H., Yusra A.F.: Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2) (2012) 963–979.
- [16] El Bourakadi K., Semlali F., Hammi M., El Achaby M.: A review on natural cellulose fiber applications: Empowering industry with sustainable solutions. International Journal of Biological Macromolecules 281 (2024) 135773.
- [17] Seddiqi H., Oliaei E., Honarkar H., Jin J., Geonzon L.C., Bacabac R.G., Klein-Nulend J.: Cellulose and its derivatives: towards biomedical applications. Cellulose 28 (2021) 1893–1931.
- [18] Chawla K.K: Composite Materials: Science and Engineering (2012, 3rd ed.). Springer Science & Business Media.
- [19] Ozkan D., Gok M.S., Karaoglanli A.C.: Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability. In: Öchsner A., Altenbach H. (eds) Engineering Design Applications III. Advanced Structured Materials 124 (2020), Springer, Cham.
- [20] Alshammari B. A., Alsuhybani M.S., AlmushaikehA.M., Alotaibi B.M., Alenad A.M., Alqahtani N.B., Alharbi A.G.: Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites. Polymers 13(15) (2020) 2474.
- [21] Thomason J.L.: The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: Part 3. Strength and strain at failure. Composites Part A: Applied Science and Manufacturing 37(11) (1996) 1922–1938.
- [22] Elanchezhian C., Vijaya Ramnath B., Hemalatha J.: Mechanical Behaviour of Glass and Carbon Fibre Reinforced Composites at Varying Strain Rates and Temperatures. Procedia Materials Science 6 (2014) 1405–1418.
- [23] Fiore V., Di Bella G., Valenza A.: Glass-basalt/epoxy hybrid composites for marine applications. Mat. Des. 32 (2011) 2091–2099.
- [24] Liu X.H.J.: Comparison and characteristics of continuous basalt fiber, carbon fiber, aramid fiber and glass fiber. Shanxi Science and Technology 29 (2014) 87–90.
- [25] Hafad S.A., Hamood A.F., AlSalihi H.A., Ibrahim S.I., Abdullah A.A., Radhi A.A., Al-Ghezi M.K., Alogaidi B.R.: Mechanical properties study of polycarbonate and other thermoplastic polymers. Journal of Physics: Conference Series 1973 (2021) 012130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28a7b886-b827-4318-aeca-0b2161cdad2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.