PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Avoiding the Obstacles in the Robot Working Zone by using the Lee Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-collision trajectories of an industrial robot are the key objective when planning its handling cycles. When the robot should move optimally, precisely and safely in each situation, it is necessary that every obstacle placed in its transition trajectory should be programmed and avoided. The optimal trajectory corresponds to choosing, if possible, the shortest and most appropriate way for the specific movement to be finished. The task of avoiding obstacles by the industrial robot in its working zone can be solved by various methods and algorithms. The paper shows the use of the kinematics SCARA as a way of avoiding obstacles by a robot in the working zone using the Lee algorithm. The configuration fields and networks are being modelled for the avoidance of obstacles together with their evaluation and the search for the shortest trajectory reflected in the robot programming.
Twórcy
  • Faculty of Business Economics with seat in Kosice, University of Economics in Bratislava, Slovakia
  • Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Namestie Slobody 17, 81231 Bratislava, Slovakia
  • Faculty of Business Economics with seat in Kosice, University of Economics in Bratislava, Slovakia
  • Faculty of Business Economics with seat in Kosice, University of Economics in Bratislava, Slovakia
  • Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Namestie Slobody 17, 81231 Bratislava, Slovakia
Bibliografia
  • 1. Angeles J.: Fundamentals of Robotic Mechanical Systems (Theory, Methods, and Algorithms) Montreal. Springer, 2007.
  • 2. Ceng J., Krämer S.: OOP-Project Maze Router with Lee Algorithm. Aachen. Institute for Integrated Signal Processing Systems, 2007.
  • 3. Daneshjo N., Králik M., Majerník M., Dudáš Pajerská E., Naščáková J.: Non-collision trajectories of service industrial robots. Advances in Engineering Software, 124 (2018), 90–96.
  • 4. Daneshjo N., Korba P., Vargová R., Tahzib B. Application of 3D Modeling and Simulation Using Modular Components. Applied Mechanics and Materials, 389 (2013), 957–962.
  • 5. Gálisová L., Knežo D.: Macroscopic ground-state degeneracy and magnetocaloric effect in the exactly solvable spin-12 Ising-Heisenberg double-tetrahedral chain. Physics Letters A. 39 (2018), 2839–2845.
  • 6. Knežo, D., Andrejiová, M., Kimáková, Z., Radchenko, S.: Determining of the optimal device lifetime using mathematical renewal models. TEM Journal. 2 (2016), 121–125.
  • 7. Manová E., Čulková K., Lukáč J., Simonidesová J., Kudlová J.: Position of the Chosen Industrial Companies in Connection to the Mining. Acta Montanistica Slovaca. Košice. Technical University of Košice, 23(2018), 132–140.
  • 8. Palko A., Smrček J.: The use of pneumatic artificial muscles in robot construction. Industrial Robot – An International Journal. 1 (2011), 11–19.
  • 9. Pribulová A., Futáš P., Petrík J., Pokusová M., Brzezinski, M., Jakubski, J.: Comparison of cupola furnace and blast furnace slags with respect to possibilities of their utilization. Archives of Metallurgy and Materials. 4 (2018), 1865–1873.
  • 10. Semjon J., Sukop M., Vagaš M., Jánoš R., Tuleja P., Koukolová L., Marcinko P., Juruš O., Varga J.: Comparison of the delta robot ABB IRB 360 properties after collisions. Communications – Scientific Letters of the University of Zilina. 1 (2018), 42–46.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28a36677-cb08-4269-a8c9-73105f42649b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.