PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wigner-Ville distribution and ambiguity function associated with the quaternion offset linear canonical transform

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wigner-Ville transform or Wigner-Ville distribution (WVD) associated with quaternion offset linear canonical transform (QOLCT) was proposed by Bhat and Dar. This work is devoted to the development of the theory proposed by them, which is an emerging tool in the scenario of signal processing. The main contribution of this work is to introduce WVD and ambiguity function (AF) associated with the QOLCT (WVD-QOLCT/AF-QOLCT). First, the definition of the WVD-QOLCT is proposed, and then several important properties such as dilation, nonlinearity, and boundedness are derived. Second, we derived the AF for the proposed transform. A bunch of important properties, including the reconstruction formula associated with the AF, are studied.
Wydawca
Rocznik
Strony
786--797
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Department of Mathematical Sciences, Islamic University of Science and Technology, Awantipora, Kashmir, India,
  • Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia
autor
  • Department of Mathematical Sciences, Islamic University of Science and Technology, Awantipora, Kashmir, India,
autor
  • Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
Bibliografia
  • [1] M. Bahri, Correlation theorem for Wigner-Ville distribution, Far East J. Math. Sci. 80 (2013), no. 1, 123–133.
  • [2] R. F. Bai, B. Z. Li, and Q. Y. Cheng, Wigner-Ville distribution associated with the linear canonical transform, J. Appl. Maths. (2012), Article ID 740161.
  • [3] M. Y. Bhat and A. H. Dar, Scaled Wigner distribution in the offset linear canonical domain, Optik - Int. J. Light Electron Opt. 262 (2022), 169286.
  • [4] L. Debnath, B. V. Shankara, and N. Rao, On new two- dimensional Wigner-Ville nonlinear integral transforms and their basic properties, Int. Trans. Sp. Funct. 21 (2010), no. 3, 165–174.
  • [5] W. B. Gao and B. Z. Li, Convolution and correlation theorems for the windowed offset linear canonical transform, 2019, arxiv: 1905.01835v2 [math.GM].
  • [6] Y. G. Li, B. Z Li, and H. F. Sun, Uncertainty principle for Wigner-Ville distribution associated with the linear canonical transform, Abstr. Appl. Anal. (2014), Article ID 470459.
  • [7] Y. E. Song, X. Y. Zhang, C. H. Shang, H. X. Bu, and X. Y. Wang, The Wigner-Ville distribution based on the linear canonical transform and its applications for QFM signal parameters estimation, J. App. Math. (2014), 8 pages.
  • [8] D. Urynbassarova, B. Z. Li, and R. Tao, The Wigner-Ville distribution in the linear canonical transform domain, IAENG Int. J. Appl. Math. 46 (2016), no. 4, 559–563.
  • [9] D. Urynbassarova, B. Zhao, and R. Tao, Convolution and correlation theorems for Wigner-Ville distribution associated with the offset linear canonical transform, Optik - Int. J. Light Electron Opt. 157 (2018), 544–466, DOI: http://dx.doi.org/10.1016/j.ijleo.2017.08.099
  • [10] D. Wei, Q. Ran, and Y. Li, A convolution and correlation theorem for the linear canonical transform and its application, Circuits Syst. Signal Process. 31 (2012), no. 1, 301–312.
  • [11] D. Wei, Q. Ran, and Y. Li, New convolution theorem for the linear canonical transform and its translation invariance property, Optik - Int. J. Light Electron Opt. 123 (2012), no. 16, 1478–1481.
  • [12] Z. C. Zhang, Unified Wigner-Ville distribution and ambiguity function in the linear canonical transform domain. Optik - Int. J. Light Electron Opt. 114 (2015), 45–60.
  • [13] M. Bahri, E. S. M. Hitzer, A. Hayashi, and R. Ashino, An uncertainty principle for quaternion Fourier transform, Comps. Maths Appl. 56 (2008), no. 9, 2398–2410.
  • [14] M. Y. Bhat and A. H. Dar, The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles, J. Anal. 30 (2022), 637–649.
  • [15] Y. El Haoui and S. Fahlaoui, Generalized uncertainty principles associated with the quaternionic offset linear canonical transform, https://arxiv.org/abs/1807.04068v1.
  • [16] E. M. S. Hitzer, Quaternion Fourier transform on quaternion fields and generalizations, Adv. Appl. Clifford Algeb. 17 (2007), no. 3, 497–517.
  • [17] H. Y. Huo, W. C. Sun, and L. Xiao, Uncertainty principles associated with the offset linear canonical transform. Math. Methods Appl. Sci. 42 (2019), no. 2, 466–474.
  • [18] K. I. Kou, Jian-YuOu, and J. Morais, On uncertainty principle for quaternionic linear canonical transform, Abstr. Appl. Anal. (2013), Article ID 725952.
  • [19] K. I. Kou, J. Morais, and Y. Zhang, Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis, Math. Meth. Appl. Sci. 36 (2013), no. 9, 1028–1041, DOI: https://doi.org/10.1002/mma.2657.
  • [20] A. H. Dar and M. Y. Bhat, Scaled ambiguity function and scaled Wigner distribution for LCT signals, Optik - Int. J. Light Electron Opt. 267 (2022), 169678.
  • [21] G. Kutyniok, Ambiguity functions, Wigner distributions and Cohen’s class for LCA groups, J. Math. Anal. Appl. 277 (2003), 589–608.
  • [22] Z. Zhang, New Wigner distribution and ambiguity function based on the generalized translation in the linear canonical transform domain, Signal Process. 118 (2016)51–61.
  • [23] H. Zhao, Q. Ran, J. Ma, and L. Tan, Linear canonical ambiguity function and linear canonical transform moments, Optik - Int. J. Light Electron Opt. 122 (2011), no. 6, 540–543.
  • [24] Z. C. Zhang, Sampling theorem for the short-time linear canonical transform and its applications. Signal Proces. 113 (2015), 138–146.
  • [25] Z. C. Zhang, Novel Wigner distribution and ambiguity function associated with the linear canonical transform. Optik - Int. J. Light Electron Opt. 127 (2015), no. 12, 4995–5012.
  • [26] J. A. Johnston, Wigner distribution and FM radar signal design, Proc. Inst. Electr. Eng. F Radar Signal Process. 136 (1989), 81–88.
  • [27] O. Bazighifan, An approach for studying asymptotic properties of solutions of neutral differential equations, Symmetry 12 (2020), no. 4, 555.
  • [28] O. Moaaz, E. M. Elabbsy, and E. Shaaban, Oscillation criteria for a class of third order damped differential equations, Arab. J. Math. Sci. 24 (2018), no. 1, 16–30.
  • [29] O. Moaaz, D. Chalishajar, and O. Bazighifan, Some qualitative behaviour of general class of difference equations, Mathematics 7 (2019), 585.
  • [30] S. S. Santra, T. Ghosh and O. Bazighifan, Explicit criteria for the oscillation of second order differential equations with several sub-linear neutral coefficients, Adv. Cont. Disc. Models 643 (2020).
  • [31] M. Y. Bhat and A. H. Dar, Convolution and correlation theorems for Wigner-Ville distribution associated with the quaternion offset linear canonical transform, Sig. Imag Vid. Processing 16 (2022), 1235–1242, DOI: https://doi.org/10.1007/s11760-021-02074-2.
  • [32] X. Fan, K. I. Kou and M. S. Liu, Quaternion Wigner-Ville distribution associated with linear canonical transforms, Signal Proces. 130 (2017), 129–141.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28a2fe2d-9ab3-4259-93e9-65c84dab464e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.