Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Enhancements in gas turbine blade cooling techniques, such as film cooling, have significantly advanced the aerothermal effi-ciency of turbines, especially in transportation sectors like aeronautics and automotive industries. This study aims to enhance turbine blade cooling by incorporating an obstruction at the jet exit. The vortex generator angle has been modified to 25°, 45°, 60°, 90° and 110°. These five designs were assessed in comparison to the conventional cylindrical hole configurations. Two injection ratios (M = 0.25, and M = 0.5) were studied within the ANSYS CFX 16 software, utilizing the finite volume method to solve the average Reynolds equations and the energy equation. The findings show qualitative alignment with experimental data for the base scenario, indicating that the vortex generator angle notably amplifies film cooling effectiveness. Typically, the vortex generator configured at 90° exhibits a stronger mixing capability compared to the other cases and cylindrical design.
Czasopismo
Rocznik
Tom
Strony
197--203
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- University of Sciences and Technology of Oran - Mohammed Boudiaf, P.O. Box 1505, El-M’Naouer, 31000, Oran, Algeria
autor
- University of Relizane, Algeria
autor
- University of Relizane, Algeria
autor
- University of Sciences and Technology of Oran - Mohammed Boudiaf, P.O. Box 1505, El-M’Naouer, 31000, Oran, Algeria
autor
- University of Sciences and Technology of Oran - Mohammed Boudiaf, P.O. Box 1505, El-M’Naouer, 31000, Oran, Algeria
autor
- University of Sciences and Technology of Oran - Mohammed Boudiaf, P.O. Box 1505, El-M’Naouer, 31000, Oran, Algeria
Bibliografia
- [1] Goldstein, R.J. (1971). Film cooling. Advances in heat transfer, 7, 321–379. doi: 10.1016/S0065-2717(08)70020-0
- [2] Liess, C. (1975). Experimental investigation of film cooling with ejection from a row of holes for the application to gas turbine blades. Journal of Engineering for Gas Turbines and Power, 97(1), 21–27. doi: 10.1115/1.3445904
- [3] Paradis, M.A. (1977). Film cooling of gas turbine blades: a study of the effect of large temperature differences on film cooling effectiveness. Journal of Engineering for Gas Turbines and Power, 99(1), 11–20. doi: 10.1115/1.3446240
- [4] Jabbari, M.Y., & Goldstein, R.J. (1978). Adiabatic wall temperature and heat transfer downstream of injection through two rows of holes. Journal of Engineering for Gas Turbines and Power, 100(2), 303–307. doi: 10.1115/1.3446350
- [5] Azzi, A. & Jubran, B.A. (2007). Numerical modelling of film cooling from converging slot-hole. Heat and Mass Transfer (Warme und Stoffubertragung), 43(4), 381–388. doi: 10.1007/ s00231-006-0115-9
- [6] Khorsi, A., & Azzi, A. (2010). Computation film cooling from three different holes geometries. Mechanika, 86(6), 32–37. doi: 10.5755/j01.mech.86.6.15971
- [7] Guangchao, L., Huiren, Z., & Huiming, F. (2008). Influences of hole shape on film cooling characteristics with CO2 injection. Chinese Journal of Aeronautics, 21(5), 393–401. doi: 10.1016/ s1000-9361(08)60051-5
- [8] Liu, C.L., Zhu, H.R., Bai, J.T., & Xu, D.C. (2011). Film cooling performance of convergingslot holes with different exitentry area ratios. Journal of Turbomachinery, 133(1), 1–11. doi: 10. 1115/1.4000543
- [9] Zaman, K.B.M.Q., Rigby, D.L., & Heidmann, J.D. (2010). Experimental study of an inclined jet-in-crossflow interacting with a vortex generator. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4−7 January, Orlando, USA. doi: 10.2514/6.2010-88
- [10] Ben Ali Kouchih, F., Boualem, K., & Azzi, A. (2021). Effect of backward injection with combined hole on film cooling performance. Journal of Mechanical Engineering and Sciences, 15(3), 8418–8427. doi: 10.15282/jmes.15.3.2021.18.0662
- [11] Boualem, K., & Azzi, A. (2020). Blowing Ratio Effect on Film Cooling Performance for a Row Holes Installed in Different Trench Configurations. Diffusion Foundations, 28, 65−75. doi: 10.4028/www.scientific.net/DF.28.65
- [12] Boualem, K., Bordjane, M., Bourdim, M., Grine, M., Ben Ali Kouchin, F., & Azzi, A. (2023). Numerical investigation of V-shaped trench on film cooling performance. Thermophysics and Aeromechanics, 30 (2), 305−315. doi: 10.1134/ S0869864323020117
- [13] Na, S. & Shih, T.I.-P. (2006). Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp. Heat Transfer, Parts A and B, 3, 931–938. ASME Turbo Expo 2006: Power for Land, Sea, and Air. 8−11 May, Barcelona, Spain. doi: 10.1115/GT2006 -91163.
- [14] Shinn, A.F., & Pratap Vanka, S. (2013). Large Eddy Simulations of Film-Cooling Flows With a Micro-Ramp Vortex Generator. Journal of Turbomachinery, 135(1). doi: 10.1115/1.4006329
- [15] An, B., Liu, J., Zhang, C., & Zhou, S. (2013). Film Cooling of Cylindrical Hole With a Downstream Short Crescent-Shaped Block. Journal of Heat Transfer, 135(3). doi: 10.1115/1.4007879
- [16] Zhou, W., & Hu, H. (2016). Improvements of film cooling effectiveness by using Barchan dune shaped ramps. International Journal of Heat and Mass Transfer, 103, 443–456, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.07.066
- [17] Zhou, W., & Hu, H. (2017). A novel sand-dune-inspired design for improved film cooling performance. International Journal of Heat and Mass Transfer, 110, 908–920. doi: 10.1016/j.ijheatmas-stransfer.2017.03.091
- [18] Grine, M., Boualem, K., Dellil, A.Z., & Azzi, A. (2020). Improv-ing adiabatic film-cooling effectiveness spanwise and lateral di-rections by combining BDSR and anti-vortex designs. Thermo-physics and Aeromechanics, 27(5), 749−758. doi: 10.1134/ S0869864320050091
- [19] Ben Ali Kouchih, F., Boualem, K., Grine, M., & Azzi, A. (2022). The Effect of an Upstream Ramp On Forward and Backward In-jection Hole Film Cooling. Journal of Heat Transfer, 142(12). doi: 10.1115/1.4047643
- [20] Sinha, A.K., Bogard, D.G., & Crawford, M.E. (1991). Film cooling effectiveness downstream of a single row of holes with vari-able density ratio. Journal of Turbomachinery, 113(3), 442–449. doi: 10.1115/1.2927894
- [21] Silieti, M., Divo, E.B., & Kassab, A.J. (2009). The effect of conjugate heat transfer on film cooling effectiveness. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 56(5), 335–350. doi: 10.1080/ 10407790903508046
- [22] El Ayoubi, C., Ghaly, W., & Hassan, I. (2015). Aerothermal shape optimization for a double row of discrete film cooling holes on the suction surface of a turbine vane. Engineering Optimization, 47(10), 1384–1404. doi: 10.1080/0305215X.2014.969725
- [23] Mayhew, J.E., Baughn, J.W., & Byerley, A.R. (2002). The effect of freestream turbulence on film cooling heat transfer coefficient. Paper GT2002-30173, ASME Turbo Expo 2002: Power for Land, Sea, and Air, 3-6 June, Amsterdam, The Netherlands. doi.org/10. 1115/GT2002-30173
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28a0647f-5506-4fbc-9b77-3ad857448f05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.