PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Pomiary fotopulsoksymetryczne przy występowaniu zakłóceń wywołanych czynnościami ruchowymi : rozwiązania układowe

Identyfikatory
Warianty tytułu
EN
Photopulsoxymetric measurements in occurrence of disturbing signals resulted from physical activity : system solutions
Języki publikacji
PL
Abstrakty
PL
Obecnie istnieje coraz szersze zapotrzebowanie na urządzenia służące do oceny stanu psychofizycznego osób, w tym żołnierzy czy sportowców, w czasie ich aktywności fizycznej, a więc w ruchu. Muszą to być przyrządy noszone. Ruch ciała jest źródłem dużych zakłóceń, które utrudniają, a nawet uniemożliwiają wykonanie pomiarów za pomocą pulsoksymetrów stosowanych w diagnostyce klinicznej. W artykule w sposób skrótowy przedstawiono zasadę pomiarów utlenowania krwi tętniczej za pomocą fotopulsoksymetrów oraz dokonano przeglądu metod przetwarzania rejestrowanych sygnałów pulsoksymetrycznych mających na celu wyeliminowanie wpływu zakłóceń ruchowych na wyniki pomiarów utlenowania krwi tętniczej.
EN
Now-a-day, there is an increasing demand for devices needed for assessing a psychophysical state of people, including soldiers and sportsmen, during their physical activity, and so in moving. Such devices must be worn. Body movement is a source of high disturbances, which impede or even make impossible realization of measurements by pulse oximeters applied in clinical diagnosis. The paper briefly presents basic information on arterial blood oxygen saturation measurements using pulse oximeters, and gives a review of methods used for processing the monitored pulse oximeter signals in order to eliminate an influence of the movement disturbances on the results of oxygen arterial blood saturation measurements.
Rocznik
Strony
76--84
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
Bibliografia
  • [1] A. Pantelopoulos et al., A survey on wearable sensor-based systems for health monitoring and prognosis, IEEE Trans. on Systems, Man, and Cybernetics – Part C: Application and reviews, 40 (2010) 1–12.
  • [2] T. Yilmaz et al., Detecting vital signs with wearable wireless sensors, Sensors 10 (2010) 10837–10862.
  • [3] S. Patel et al., A review of wearable sensors and systems with application in rehabilitation, J. of Neuro Engineering and Rehabilitation, 9 (2012) 1–17.
  • [4] C. Carmen et. al., Wearable intelligent systems for e-health, Journal of Computing Science and Engineering, 5 (2011) 246–256.
  • [5] A. Darwish et al., Wearable and implantable wireless sensor network solutions for healthcare monitoring, Sensors 11 (2011) 5561–5595.
  • [6] M. Chan et al., Smart wearable systems: Current status and future challenges, Artificial Intelligence in Medicine 56 (2012) 137–156.
  • [7] J.W. Severinghaus, History, status and future of pulse oximetry, Book chapter in: Continuous Transcutaneous Monitoring, Adv. Exp. Med. Biol., vol. 7. 220 (1987) 3–8.
  • [8] T. Tamura et al., Wearable photoplethysmographic sensors – past and Present, Electronics 2014, 3, 282–302.
  • [9] Wieben O, Light absorbance in pulse oximetry, in Design of Pulsoximeters, J.G. Webster, Editor. 1997, Institute of Physics Publishing, Medical Science Series, p. 40–55.
  • [10] M. Shafique Investigation of photoplethysmography and arterial blood oxygen saturation during artificially induced peripheral hypoperfusion utilising multimode photometric sensors, Doctor thesis, City University London, 2011.
  • [11] S. M. L. Silva et al., Near-infrared transmittance pulse oximetry with laser diodes, J. of Biomedical Optics, 8 (2003) 525–533.
  • [12] J. Zheng et al., Non-contact reflection photoplethysmography towards effective human physiological monitoring, J. of Medical and Biological Engineering, 30 (2009) 161–167.
  • [13] J.A.C. Patterson et al., Ratiometric artifact reduction in low power reflective potoplethysmography, IEEE Trans. on Biomed. Circuits and Systems, 5 (2011) 330–338.
  • [14] Y. Mendelson, Pulse oximetry: theory and applications for noninvasive monitoring, Clinical Chemistry, 38 (1992) 1601–1607.
  • [15] M. Shafique et al., Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO2 sensor, Med. and Biol. Eng. and Comput., 50 (2012) 575–583.
  • [16] S. Bagha, L. Shaw A real time analysis of PPG signal for measurement of SpO2 and pulse rate, Int. J. of Computer Applications, 36 (2011) 45–50.
  • [17] R.G. Haahr et al., An electronic patch for wearable health monitoring by reflectance pulse oximetry, IEEE Trans. on Biomed. Circuits and Systems, 6 (2012) 45–53.
  • [18] M. Tavakoli et al., An ultra-low-power pulse oximeter implemented with an energy-efficient transimpedance amplifier, IEEE Trans. on Biomed. Circuits and Systems, 4 (2010) 27–38.
  • [19] K. Glaros, E.M. Drakakis, A Sub-mW fully-integrated pulse oximeter front-end, IEEE Trans. on Biomed. Circuits and Systems, 7 (2013) 363–375.
  • [20] J.M. Goldman et al., Masimo signal extraction pulse oximetry, J. of Clinical Monitoring and Computing, 16, (2000) 475–483.
  • [21] H. Han, J. Kim Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method, Computers in Biology and Medicine, 42 (2012) 387–393.
  • [22] J.M. Graybeal, M.T. Petterson, Adaptive filtering and alternative calculations revolutionizes pulse oximetry sensitivity and specificity during motion and low perfusion, Proc. of the 26th Annual Int. Conf. of the IEEE EMBS, San Francisco, USA, (1–5.09.2004) 5363–5365.
  • [23] M.T. Petterson et al., The effect of motion on pulse oximetry and its clinical significance, Anesthesia and Analgesia, 105 (2007) S78-S84.
  • [24] B.S. Kim, S.K. Yoo, Motion artifact reduction in photoplethysmography using independent component analysis, IEEE Trans. on Biomed. Eng., 53 (2006) 566–568.
  • [25] T. Jansen et al., Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2) – a comparative study, Proc. IEEE Annual Int. Conf. EMBS (2009) 4039–4044.
  • [26] A. Hyvärinen and E. Bingham, A fast fixed-point algorithm for independent component analysis of complex-valued signals, Int. J. Neural Syst., 10 (2000) 1–8.
  • [27] G.-J. Jang et al., A maximum likelihood approach to single-channel source separation, J. of Machine Learning Research 4 (2003) 1365–1392.
  • [28] Molgedey L, Schuster HG (1994) Separation of a mixture of independent signals using time delayed correlations. Phys. Rev Lett 72:3634–3637.
  • [29] P.A. Hojen-Sorensen et al., Mean field approaches to independent component analysis, Neural Computatin, 14 (2002) 889–918.
  • [30] O. Winther and K. B. Petersen, Flexible and efficient implementations of bayesian independent component analysis, Neurocomputing, 71 (2007) 221–233.
  • [31] R. Krishnan et al., Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data, IEEE Trans. on Biomed. Eng., 57 (2010) 1867–1876.
  • [32] F. Peng et al., Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter, BioMedical Engineering OnLine, 13:50 (2014) 1–14.
  • [33] J.-W. Lee, G.-K. Lee, Design of an adaptive filter with dynamic structure for ECG signal processing, Int. J. of Control, Automation, and Systems, 3 (2005) 137–142.
  • [34] Sample-and-Hold Amplifiers, Analog Devices, MT-090, Tutorial.
  • [35] H.-W. Lee et al., The periodic moving average filter for removing motion artifacts from PPG signals, Int. J. of Control, Automation, and Systems, 5 (2007) 701–706.
  • [36] H. Azami et al., An improved signal segmentation using moving average and Savitzky-Golay filter, J. of Signal and Information Processing, 3 (2012) 39–44.
  • [37] R. Yousefi et al, A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors, IEEE J. of Biomedical and Health Informatics, 8 (2014) 670–681.
  • [38] K. Li, S. Warren, A wireless reflectance pulse oximeter with digital baseline control for unfiltered photoplethysmograms, IEEE Trans. on Biomed. Circuits and Systems, 6 (2012) 269–278.
  • [39] H. Han et al., Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography, Proc. of the 29th Ann. Int. Conf. of the IEEE EMBS, Lyon, France, (23-26.8.2007) 1538–1541.
  • [40] M.R. Ram et al., A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter, IEEE Trans. Instrum. Meas., 61 (2012) 1445–1457.
Uwagi
PL
Badania zostały wykonane w ramach projektu „Heath-Chips” (HeC), dzięki finansowaniu NCBiR nr umowy DOBR/0053/R/ID1/2013/03.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-289fbf5d-0a3c-4712-a5c1-d2ef220195d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.