PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The velocity field to unsteady fluid flow in a circular cylinder with generalized caputo fractional derivative

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the velocity field corresponding to the unsteady flow of a second-grade fluid with a generalized Caputo fractional derivative in a circular cylinder. The analytical solution of the velocity field has been obtained utilizing the Laplace and the finite Hankel transforms. The solution is obtained in terms of a series containing the Mittag-Leffler functions, being the generalization of the exponential function. The effect of the fractional parameters and on fluid motion are illustrated graphically for three different cases. The model discussed in this work is more general and can be applied to other fluid models.
Rocznik
Strony
66--75
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Science, Damietta University Damietta, Egypt
  • Department of Mathematics and Engineering Physics, Engineering Faculty, Mansoura University Mansoura, Egypt
Bibliografia
  • 1. Liu, J.G., Yang, X.J., Feng, Y.Y., & Geng, L.L. (2023). A new fractional derivative for solving time fractional diffusion wave equation. Mathematical Methods in the Applied Sciences, 46(1), 267-272.
  • 2. Abdel Kader, A.H., Abdel Latif, M.S., & Baleanu, D. (2021). Some exact solutions of a variable coefficients fractional biological population model. Mathematical Methods in the Applied Sciences, 44, 4701-4714.
  • 3. Kamran, M., Athar, M., & Imran, M. (2011). On the unsteady linearly accelerating flow of a fractional second grade fluid through a circular cylinder. International Journal of Nonlinear Science, 11(3), 317-324.
  • 4. Danish, G.A., Imran, M., Sadiq, N., Iram, M., & Tahir, M. (2019). Caputo-Fabrizio fractionalized second grade fluid in a circular cylinder with uniform magnetic field. Punjab University Journal of Mathematics, 51(12), 1-11.
  • 5. Elhadedy, H., Abdel Kader, A.H., & Abdel Latif, M.S. (2021). Investigating heat conduction in a sphere with heat absorption using generalized Caputo fractional derivative. Heat Transfer, 50, 6955-6963.
  • 6. Baleanu, D., Sajjadi, S.S., Jajarmi, A., & Defterli, O. (2021). On a nonlinear dynamical system with both chaotic and non-chaotic behaviors: a new fractional analysis and control. Advances in Difference Equations, 234, 1-17.
  • 7. Jamil, M., & Ahmed, I. (2016). Helical flows of fractionalized second grade fluid through a circular cylinder. Proceedings of AMPE, 2, 435-446.
  • 8. Tarasov, V.E. (2010). Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Berlin: Springer.
  • 9. Sumelka, W., Luczak, B., Gajewski, T., & Voyiadjis, G.Z. (2020). Modelling of AAA in the framework of time-fractional damage hyperelasticity. International Journal of Solids and Structures, 206, 30-42.
  • 10. Abdel Latif, M.S., Abdel Kader, A.H., & Baleanu, D. (2020). The invariant subspace method for solving nonlinear fractional partial differential equations with generalized fractional derivatives. Advances in Difference Equations, 119, 1-13.
  • 11. Sene, N., & Gomez-Aguilar, J.F. (2019). Analytical solutions of electrical circuits considering certain generalized fractional derivatives. The European Physical Journal Plus, 134, 1-14.
  • 12. Sadaf, M., Perveen, Z., Zainab, I., Akram, G., Abbas, M., & Baleanu, D. (2023). Dynamics of unsteady fluid-flow caused by a sinusoidally varying pressure gradient through a capillary tube with Caputo-Fabrizio derivative. Thermal Science, 27(1), 49-56.
  • 13. Gabr, A., Abdel Kader, A.H., & Abdel Latif, M.S. (2021). The effect of the parameters of the generalized fractional derivatives on the behavior of linear electrical circuits. International Journal of Applied and Computational Mathematics, 7, 1-14.
  • 14. Zhou, Y., & Zhang, Y. (2020). Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mechanica, 231, 3017-3029.
  • 15. Samaneh, S.Z. (2019). Approximation methods for solving fractional equations. Chaos, Solitons and Fractals, 125, 171-193.
  • 16. Zheng, B. (2014). A new fractional Jacobi elliptic equation method for solving fractional partial differential equations. Advances in Difference Equations, 228, 1-11.
  • 17. Jarad, F., & Abdeljawad, T. (2020). Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems-S, 13, 709-722.
  • 18. Jarad, F., & Abdeljawad, T. (2018). A modified Laplace transform for certain generalized fractional operators. Results in Nonlinear Analysis, 1, 88-98.
  • 19. Akgul, E.K., Akgul, A., & Baleanu, D. (2020). Laplace transform method for economic models with constant proportional Caputo derivative. Fractal and Fractional, 4, 1-10.
  • 20. Zahra, W.K., Hikal, M.M., & Bahnasy, T.A. (2017). Solutions of fractional order electrical circuits via Laplace transform and nonstandard finite difference method. Journal of the Egyptian Mathematical Society, 25, 252-261.
  • 21. Sene, N., & Fall, A.N. (2019). Homotopy perturbation ρ-Laplace transform method and its application to the fractional diffusion equation and the fractional diffusion-reaction equation. Fractal and Fractional, 3, 1-15.
  • 22. Li, X.-J. (2007). On the Hankel transform of order zero. Journal of Mathematical Analysis and Applications, 335(2), 935-940.
  • 23. Elkott, I., Abdel-Latif, M.S., El-Kalla, I.L., & Abdel Kader, A.H. (2023). Some closed form series solutions for the time-fractional diffusion-wave equation in polar coordinates with a generalized Caputo fractional derivative. Journal of Applied Mathematics and Computational Mechanics, 22(2), 5-14.
  • 24. Maimardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity. London: Imperial College Press.
  • 25. Erdogan, M.E., & Imrak, C.E. (2005). On unsteady unidirectional flows of a second grade fluid. International Journal of Non-Linear Mechanics, 40, 1238-1251.
  • 26. Fetecau, C., Hayat, T., Fetecau, C., & Ali, N. (2008). Unsteady flow of a second grade fluid between two side walls perpendicular to a plate. Nonlinear Analysis: Real World Applications, 9, 1236-1252.
  • 27. Debnath, L., & Bhatta, D. (2015). Integral Transforms and Their Applications. New York: Taylor & Francis Group.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-289e2577-7431-46a3-af46-6fadda9c9b26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.