PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Czy małe dawki promieniowania jonizującego są szkodliwe?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Hipoteza liniowej, bezprogowej zależności (ang. linear, no-threshold, LNT) między dawką promieniowania jonizującego (p.j.) a wywołanym przez nią skutkiem zakłada, że każda, nawet najmniejsza dawka pochłoniętego przez organizm człowieka p.j. może prowadzić do rozwoju nowotworu ciągle stanowi podstawę regulacji w ochronie radiologicznej. W pracy, po krótkiej rekapitulacji genezy hipotezy LNT, podano przykłady wyników analiz epidemiologicznych i badań prowadzonych na zwierzętach doświadczalnych świadczących, że hipoteza ta nie ma podstaw naukowych i że jej stosowanie utrudnia lub uniemożliwia wykorzystanie ekspozycji w niskich dawkach p.j. w diagnostyce i terapii chorób. Pora więc najwyższa aby porzucić fałszywą i szkodliwą hipotezę LNT na rzecz modelu progowego lub hormetycznego opartego na współczesnej wiedzy o działaniu niskich dawek p.j.
EN
The linear, no threshold (LNT) hypothesis assuming that all ionizing radiation is harmful and that even the smallest absorbed dose of radiation may be carcinogenic constitutes the basis of radiation protection regulations. He present review briefly recapitulates the genesis of the LNT dogma and provides examples of results of both epidemiological and experimental studies indicating that the dogma is false and unscientific and, when applied in practice, begets more harm than good. Hence, the time is ripe, if not long overdue, to place cancer risk assessment on the biologically based and fully transparent foundations.
Czasopismo
Rocznik
Strony
18--22
Opis fizyczny
Bibliogr. 36 poz.
Bibliografia
  • Brant A, Ulsh BA, Calabrese EJ. Time for Radiation Regulation to Evolve. The Cato Institutes magazine, Regulation, Fali 2019.
  • Calabrese EJ, Baldwin LA. Radiation hormesis: the demise of a legitimate hypothesis. Hum Exp Toxicol. 19(l):76-84, 2000. doi: 10.1191/096032700678815611.
  • Calabrese EJ. On the origins of the linear nothreshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environ. Res. 142: 432 - 442, 2015.
  • Calabrese EJ. Ethical failings: The problematic history of cancer risk assessment. Environ Res 193:110582, 2021. doi: 10.1016/j.envres.2020.110582.
  • Cardarelli JJII, Ulsh BA. It Is Time to Move Beyond the Linear No-Threshold Theory for Low-Dose Radiation Protection. Dose Response 16(3):1559325818779651, 2018. doi: 10.1177/1559325818779651.
  • Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M, Janiak MK. Single Iow doses of X- Rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat. Res. 161: 335-340, 2004. doi: 10.1667/rr3123.
  • Cohen BL. Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys. 68(2): 157-174,1995. doi: 10.1097/00004032-199502000-00002.
  • Cohen BL. Test of the linearno threshold theory: rationale for procedures. Dose Response 3(3):369-390, 2006. doi: 10.2203/dose-response.003.03.007.
  • Dobrzyński L, Janiak MK, Strupczewski A, Waligórski M. O konieczności zmiany paradygmatu ochrony radiologicznej - komentarz SARI - Stowarzyszenia Uczonych dla Rzetelnej Informacji o Promieniowaniu. Scientists for Accurate Radiation Information, On the need to replace the present paradigm of radiation protection - comments by SARI (Scientists for Accurate Radiation Information). Post Tech Jądr. 60(3): 2-11, 2017.
  • Doli R. Mortality of British Radiologists: A Lecture Note. J. Radiat. Res., 46:123-129, 2005.
  • Doss M. Evidence supporting radiation hormesis in atomie bomb survivor cancer mortality data. Dose Response 10(4): 584-592, 2012. doi: 10.2203/doseresponse.12-023.Doss.
  • Golden R, J Bus J, Calabrese E. An examination of the linear no-threshold hypothesis of cancer risk assessment: Introduction to a series of reviews documenting the lack of biological plausibility of LNT. Chem Biol Interact. 301: 2-5, 2019. doi: 10.1016/j.cbi.2019.01.038.
  • Grant EJ, Furukawa K, Sakata R, Sugiyama H, Sadakane A, Takahashi I, Utada M, Shimizu Y, Ozasa K. Risk of death among children of atomie bomb survivors after 62 years of followup: a cohort study. Lancet Oncol. 16(13): 1316-23,2015. doi: 10.1016/S1470-2045(15)00209- 0.
  • Hansen CL, Hingorani R. LNT RIP: It is time to bury the linear no threshold hypothesis. J Nuci Cardiol. 26(4): 1358-1360,2019. doi: 10.1007/sl2350-019-01646-7.
  • Hosoi Y, Sakamoto K. Suppressive effect of Iow dose total body irradiation on lung metastasis: dose dependency and effective period. Radiother Oncol. 26(2): 177-179, 1993. doi: 10.1016/0167-8140(93)90101-d.
  • Ina Y, Sakai K. Further study of prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of whole-life irradiation. Radiat Res. 163(4): 418- 423,2005. doi: 10.1667/rr3316.
  • Ina Y, Tanooka H, Yamada T, Sakai K. Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat Res. 163(2): 153-158,2005. doi: 10.1667/rr3289.
  • Janiak MK, Pocięgiel M, Welsh JS. Time to rejuvenate ultralow dose wholebody radio-therapy of cancer. Crit Rev Oncol Hematol. 160:103286, 2021. doi: 10.1016/j.critrevonc. 2021.103286.
  • Jaworowski Z. Observations on the Chernobyl Disaster and LNT. Dose Response 8(2): 148-71, 2010a. doi: 10.2203/dose-response.09-029.Jaworowski.
  • Jaworowski Z. Radiation hormesis - a remedy for fear. Hum Exp Toxicol. 29(4): 263-270, 2010b. doi: 10.1177/0960327110363974.
  • Kamiński CY, Dattoli M, Kamiński JM. Replacing LNT: The Integrated LNT-Hormesis Model. Dose Response 8(2): 1559325820913788, 2020. doi: 10.1177/1559325820913788.
  • Lorenz E, Hollcroft WJ, Miller E, Congdon CC, Schweisthal R. Long-term effects of acute and chronic irradiation in mice. I. Survival and tumor incidence following chronic irradiation of 0.11 r per day. J Natl Cancer Inst. 15(4): 1049 - 1058,1955.
  • Luckey TD. Radiation hormesis: The good, the bad, and the ugly. Dose Response 4(3): 169 - 190, 2006. doi: 10.2203/dose-response.06-102.1uckey
  • Luckey TD. Atomie bomb health benefits. Dose- Response, 6: 369 - 382, 2008. doi: 10.2203/dose- response.08-009.Luckey.
  • Muller HJ. Artifkial transmutation of the gene. Science 66(1699): 84 - 87,1927.
  • Nowosielska EM, Cheda A, Wrembel-Wargocka J, Janiak MK. Anti-neoplastic and immunosti- mulatory effects of low-dose X-ray fractions in mice. Int. J. Radiat. Biol. 87(2): 202-212, 2011. doi: 10.3109/09553002.2010.519422.
  • Nowosielska EM, Cheda A, Pociegiel M, Cheda L, Szymański P, Antoni Wiedlocha A. Effects of a unique combination of the wholebody Iow dose radiotherapy with inactivation of two immune checkpoints and/or a heat shock protein on the transplantable lung cancer in Mice. Int. J. Mol. Sci. 22(12): 6309, 2021. doi: 10.3390/ijms22126309.
  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. Studies of the mortality of atomie bomb survivors, report 14, 1950 - 2003: An overview of cancer and noncancer diseases. Radiat Res. 177(3): 229 - 243, 2012. doi: 10.1667/rr2629.1.
  • Sanders CL. Radiobiology and Radiation Hormesis. New Evidence and its Implications for Medicine and Society. Springer-Verlag GmbH, 2017. ISBN: 3319563718
  • Sutou S. Low-dose radiation from A-bombs elongated lifespan and reduced cancer mortality relative to un- irradiated individuals. Genes Environ. 40: 26, 2018. doi: 10.1186/S41021-018-0114-3.
  • Suzuki N, Mizukoshi T. Effect of Iow doses of whole body irradiation on spontaneous lung metastasis of NFSA2ALM1 mouse tumors. Radiat Med. 5(6): 212- 214.1987.
  • Takahashi A, Ohnishi T. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat. J Radiat Res. 50(5): 385-393, 2009. doi: 10.1269/jrr.09048s. Epub 2009 Jun 13.
  • Thompson RE, Nelson DF, Popkin JH, Popkin Z. Casecontrol study of lung cancer risk from residential radon exposure in Worcester county, Massachusetts. Health Phys. 94(3): 228-241, 2008. doi: 10.1097/01.HP.0000288561.53790.5f.
  • UNSCEAR 2000. Sources and Effects of Ionizing Radiation. Vol. II: Effects. United Nations Scientific Committee on the Effects of Atomie Radiation, 2000 Report to the General Assembly, with scientific annexes. Annex J. United Nations sales publication E.00.IX.4. United nations, New York, 2000.
  • UNSCEAR 2008. Sources and Effects of Ionizing Radiation. Vol. II: Effects: Scientific Annexes C, D and E. UNSCEAR 2008 Report. United Nations Scientific Committee on the Effects of Atomie Radiation. Annex D. United Nations sales publication E.00.IX.4. United nations, New York, 2011.
  • UNSCEAR 2012. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly and Scientific Annexes A and B. UNSCEAR 2012 Report. United Nations Scientific Committee on the Effects of Atomie Radiation. Annex A. United Nations sales publication E. 00.IX.4. United nations, New York, 2015. 
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-289612df-074c-4636-86c8-695089de87a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.