PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Snell's optimization problem for sequences of convex compact valued random sets

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A random set analogue of the Snell problem is presented. In the original Snell’s problem one observes a sequence of random variables (ξn), say a gambler’s capital at successive games. If the gambler leaves the game at a random time ν, his expected capital at this time is Eξν. The objective is to stop at time ν (using information available up to this moment) such that the expected gambler’s fortune Eξν is maximal. Here a multivalued analogue of this problem will be studied. Given a Banach space and a sequence of convex weakly or strongly compact valued random sets (Zn) in that space, the existence of a stopping time ν such that EZν is maximal is investigated.
Słowa kluczowe
Rocznik
Strony
77--91
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Department of Mathematics and Nature, The Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
Bibliografia
  • [l] E. J. Balder and Ch. Hess, Two generalizations of Komlòs Theorem with lower closure-type applications, J. Convex Anal. 3, No. 1 (1996), pp. 1-20.
  • [2] G. Beer, Topologies on Closed Conves Sets, Mathematics and Its Applications 268, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1993.
  • [3] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin 1977.
  • [4] Y. S. Chow, H. Robbins and D. Siegmund, Great Expectations: The Theory of Optimal Stopping, Houghton Miffin, Boston 1971.
  • [5] A. Costé, Sur les martingales multivoques, C.R. Acad. Sci. Paris 290 (1980), pp. 953-956.
  • [6] Ch. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math Anal. Appl. 153 (1990), pp. 226-249.
  • [7] Ch. Hess, Convergence of conditional expectations for unbounded random sets, integrands and integral functionals, Math. Oper. Res. 16, No. 3 (1991), pp. 627-649.
  • [8] Ch. Hess, On multivalued martingales whose values may be unbounded: Martingale selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), pp. 175-201.
  • [9] F. Hiai, Convergence of conditional expectations and SLLN for multivalued random variables, Trans. Amer. Math. Soc. 291 (1985), pp. 613-627.
  • [10] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), pp. 149-182.
  • [11] J. Neveu, Discrete-Parameter Martingales, North-Holland Publishing Company, 1975.
  • [12] Y. Sonntag and C. Zălinescu, Scalar convergence of convex sets, J. Math. Anal. Appl. 164 (1992), pp. 219-241.
  • [13] M. Valadier, Multi-applications à valeurs convexes compactes, J. Math. Pures Appl. 50 (1971), pp. 265-267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28938c82-a90e-4fc7-a7f7-7f193d82252c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.