Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper analysed the influence of current frequency on the thermal field of the insulated busbar. Its physical model consists of two hollow cylinders and a solid cylinder with different material properties. In turn, the mathematical model is a system of heat conduction equations with the appropriate set of the boundary, initial and continuity conditions. The problem was solved using the modified Green’s method. As a result, the following characteristics and parameters of the busbar were determined as a functions of frequency: heating curves, local time constants, steady-state current ratings, and stationary temperature profiles. The results were positively verified by finite element method.
Słowa kluczowe
Rocznik
Tom
Strony
89--97
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology
autor
- Faculty of Electrical Engineering, Bialystok University of Technology
Bibliografia
- [1] G.J. Anders, Rating of electric power cables: ampacity computations for transmission, distribution, and industrial applications, McGraw-Hill Professional, New York, 1997.
- [2] R.T. Coneybeer, W.Z. Black, and R.A. Bush, “Steady-state and transient ampacity of bus bar”, IEEE Transactions on Power Delivery 9 (4), 1822–1829 (1994).
- [3] M.K. Kazimierczuk, High-freguency magnetic components, Willey Publishing, 2009.
- [4] V.T. Morgan, “The current distribution, resistance and internal inductance of linear power system conductors – a review of explicit equations”, IEEE Transactions on Power Delivery 3 (28), 1252–1262 (2013).
- [5] J. Acero, C. Carretero, I. Lope, R. Alonso, and J.M. Burdio, “An-alytical solution of the induced currents in multilayer cylindrical conductors under external electromagnetic sources”, Applied Mathematical Modelling 40, 10667–10678 (2016).
- [6] U.R. Patel, B. Gustavsen, and P. Triverio, “An equivalent surface current approach for the computation of the series impedance of power cables with inclusion of skin and proximity effect”, IEEE Transactions on Power Delivery 4 (28), 2474–2482 (2013).
- [7] U.R. Patel and P. Triverio, “A complete model for computing the impedance of cable systems including skin, proximity, and ground return effect”, IEEE Transactions on Power Delivery 5 (30), 2110–2118 (2015).
- [8] W. Mingli and F. Yu, “Numerical calculations of internal impedance of solid and tubular cylindrical conductors under large parameters”, IEE Proceedings-Generation, Transmission and Distribution 1 (151), 67–72 (2004).
- [9] K.E. Oughstun, “Asymptotic description of pulsed ultrawideband electromagnetic beam field propagation in dispersive, attenuative media”, Journal of the Optical Society of America A 18 (7), 1704–1713 (2001).
- [10] N.A. Cartwirght and K.E. Oughstun, “Uniform asymptotics applied to ultrawideband pulse propagation”, Society for Industrial and Applied Mathematic 49 (4), 628–648 (2007).
- [11] L.D. Paarmann, Design and Analysis of Analog Filters: A Signal Processing Perspective, Springer Science & Business Media, 2006.
- [12] F. Yang, G. Enzner, and J. Yang, “Frequency-Domain Adaptive Kalman Filter With Fast Recovery of Abrupt Echo-Path Changes”, IEEE Signal Processing Letters 24 (12), 1778–1782 (2017).
- [13] O. Chavez and F. Mendez, “Conjugate heat transfer in a bimetallic conductor with variable electric resitivity”, Applied Thermal Engineering 31, 3420–3427 (2011).
- [14] O. Chavez, F. Godinez, F. Mendez, and A. Aguilar, “Prediction of temperature profiles and ampacity for monometallic conductor considering the skin effect and temperature-depended resistivity”, Applied Thermal Engineering 109, 401–412 (2016).
- [15] A. Jordan, A. Barka, and N. Benmouna, “Transient state temperature distribution in a cylindrical conductor with skin effect”, International Journal of Heat and Mass Transfer 11 (30), 2446–2447 (1987).
- [16] M.J. Latif, Heat conduction, Springer-Verlag, Haidelberg, 2009.
- [17] Z.S Kolenda and J.S. Szmyd, “Entropy generation minimization in transient heat conduction processes PART II – Transient heat conduction in solids”, Bull. Pol. Ac.: Tech. 62 (4), 883–887 (2014).
- [18] K.D. Cole, A. Haji-Sheikh, J.V. Beck, and B. Litkouhi, Heat conduction using Green’s functions, CRC Press, 2011.
- [19] K. Gnidzinska, G. de Mey, and A. Napieralski, “Heat dissipation and temperature distribution in long interconnect lines”, Bull. Pol. Ac.: Tech. 58 (1), 119–124 (2010).
- [20] D.W. Hahn and M.N. Ozisik, Heat Conduction, John Wiley & Sons, New Jersey, 2012.
- [21] S. Kukla and U. Siedlecka, “Green’s function for heat conduction problems in a multi-layered hollow cylinder”, Journal of Applied Mathematics and Computational Mechanics 13 (3), 115–122 (2014).
- [22] S. Singh, P.H. Jain, and Rizwan-Uddin, “Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction”, International Journal of Thermal Sciences 47, 261–279 (2008).
- [23] A. Brykalski, “Ein Beitrag zur Bestimmung der mittleren Zeitkonstante von Diffusionsprozessen”, International Journal of Heat and Mass Transfer 28 (3), 613–620 (1985).
- [24] Wolfram Research, Inc., Mathematica, Illinois: Wolfram Research Inc., 2018.
- [25] P. Nithiarasu, R.W. Lewis, and K.N. Seetharamu, Fundamentals of the finite element method for heat and mass transfer, John Wiley & Sons 2016.
- [26] Manuals for NISA v.16, NISA Suite of FEA Software (CD-ROM), Cranes Software, Inc. Troy, MI, USA, 2008.
- [27] J. Gołebiowski and J. Forenc, “Parallel computations of the step response of a floor heater with the use of a graphics processing unit. Part 2: results and their evaluation”, Bull. Pol. Ac.: Tech. 61 (4), 949–954 (2013).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-288e3b1f-99a7-4b57-8854-bd756af8f1a8