PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Identification of eddy viscosity parameter and depth-averaged secondary flow in a compound channel with and without emerged vegetation on floodplains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Shiono–Knight method (SKM) was used to calculate a lateral profile of the depth-averaged velocity and determine the flow rate for a compound channel, both in the presence and absence of emergent vegetation on the floodplains. The SKM is an analytical solution of the Navier–Stokes equations. The effect of vegetation (trees) on flow was simulated using two approaches: with an averaged friction factor and by adding a drag force term in the Navier–Stokes equation. Based on flume and field experiments in compound channels with and without emergent vegetation, values of parameters for the dimensionless eddy viscosity and the secondary flow term were identified using the Monte Carlo sampling technique. The surface of the main channel bed was smooth and made of concrete, whereas the floodplains and all sloping banks were covered by cement mortar composed of terrazzo. Calculations were performed using various models, applied to both laboratory and field data sets. The obtained velocity and flow rate distributions were consistent with observations.
Rocznik
Strony
85--100
Opis fizyczny
Biblioghr. 30 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
Bibliografia
  • [1] KOZIOŁ A.P., Three-dimensional turbulence intensity in a compound channel, J. Hydr. Eng., 2013, 139, 852–864. DOI: 10.1061/(ASCE)HY.1943-7900.0000739.
  • [2] KNIGHT D.W., SHIONO K., Turbulence measurements in a shear layer region of a compound channel, J. Hydr. Res., 1990, 28 (2), 175–196. DOI:10.1080/00221689009499085.
  • [3] SHIONO K., KNIGHT D.W., Mathematical models of flow in two or multi stage straight channels, Proc. Int. Conf. on River Flood Hydraulics, Wiley, New York 1990, 229–238.
  • [4] SHIONO K., KNIGHT D.W., Turbulent open-channel flows with variable depth across the channel, J. Fluid Mech., 1991, 222, 617–646. DOI: 10.1017/S0022112091001246.
  • [5] TANG X., KNIGHT D.W., Lateral depth-averaged velocity distributions and bed shear in rectangular compound channels, J. Hydr. Eng., 2008, 134, 1337–1342. DOI: 10.1061/(ASCE)0733-9429(2008) 134:9(1337).
  • [6] SHIONO K., TAKEDA M., YANG K., SUGIHARA Y., ISHIGAKI T., Modeling of vegetated rivers for inbank and overbank flows, Proc. Int. Conf. on Fluvial Hydraulics: River Flow 2012, September 5–7, San Jose, Costa Rica, 263–269.
  • [7] KORDI H., AMINI R., ZAHIRI A., KORDI E., Practical secondary flow contribution for meandering com-pound open channels, ISH J. Hydr. Eng., 2023, 29 (2), 121–128.
  • [8] PASCHE E., ROUVÉ G., Overbank flow with vegetatively roughened flood plains, J. Hydr. Eng., 1985, 111, 1262–1278. DOI: 10.1061/(ASCE)0733-9429(1985)111:9(1262).
  • [9] TANINO Y., NEPF H.M., Laboratory investigation of mean drag in a random array of rigid, emergent cylinders, J. Hydr. Eng., 2008, 134 (1), (34). DOI: 10.1061/(ASCE)0733-9429(2008)134:1(34).
  • [10] NEPF H.M., Hydrodynamics of vegetated channels, J. Hydr. Res., 2012, 50 (3), 262–279. DOI: 10.1080/00221686.2012.696559.
  • [11] SANJOU M., NEZU I., Turbulence structure and concentration exchange property in compound open-channel flows with emergent trees on the floodplain edge, Int. J. River Basin Manage., 2011, 9 (3–4), 181–193. DOI: 10.1080/15715124.2011.584511.
  • [12] SHARIFI S., Application of evolutionary computation to open channel flow modelling, University of Birmingham, Birmingham 2009.
  • [13] KOZIOŁ A.P., KUBRAK J., KUBRAK E., KRUKOWSKI M., KICZKO A., Distributions of velocity in compound channels with high vegetation on floodplains, Acta Sci. Pol. Form. Circ., 2016, 15, 227–241 (in Polish).
  • [14] RAMESHWARAN P., SHIONO K., Quasi two-dimensional model for straight overbank flows through emergent vegetation on floodplains, J. Hydr. Res., 2007, 45, 302–315. DOI: 10.1080/00221686.2007.9521765.
  • [15] TANG X., KNIGHT D.W., Lateral distributions of streamwise velocity in compound channels with partially vegetated floodplains, Sci. China, Ser. E, Technol. Sci., 2009, 52, 3357–3362. DOI: 10.1007/s11431-009 -0342-7.
  • [16] KNIGHT D.W., TANG X., STERLING M., SHIONO K., MCGAHEY C., Solving open channel flow problems with a simple lateral distribution model, River Flow, 2010, 1, 41–48.
  • [17] SHIONO K., RAMESHWARAN P., Mathematical modelling of bed shear stress and depth averaged veloc-ity for emergent vegetation on floodplain in compound channel, e-Proc. 36th IAHR World Congress, 2015, 326–336.
  • [18] SHARIFI S., STERLING M., KNIGHT D.W., Can the application of a multi-objective evolutionary algorithm improve conveyance estimation?, Water Environ. J., 2011, 25, 230–240. DOI: 10.1111/j.1747-6593.2010.00223.x.
  • [19] KNIGHT D.W., YUEN K.W., AL-HAMID A.A., Boundary shear stress distributions in open channel flow, [In:] K.J. Beven, P.C. Chatwin, J.H. Millibank (Eds.), Mixing and Transport in the Environment, John Wiley & Sons, 1994, 51–87.
  • [20] KNIGHT D.W., OMRAN M., TANG X., Modeling depth-averaged velocity and boundary shear, J. Hydr. Eng., 2007, 133, 39–47.
  • [21] ACKERS P., Hydraulic design of straight compound channels, Vol. 1. Summary and Design Method, Vol. 2. Appendices, Hydraulics Research Limited, Wallington, UK, 1991.
  • [22] CZERNUSZENKO W., KOZIOŁ A.P., ROWIŃSKI P.M., Measurements of 3D turbulent structure in a compound channel, Arch. Hydro-Eng. Environ. Mech., 2007, 51, 3–21.
  • [23] KOZIOŁ A.P., Investigation of the time and spatial macro-scale of turbulence in a compound channel, Acta Sci. Pol. Arch., 2008, 7, 15–23 (in Polish).
  • [24] KOZIOŁ A.P., Turbulent kinetic energy of water in a compound channel, Ann. Warsaw Univ. Life Sci. – SGGW, L. Reclam., 2011, 43, 193–205.
  • [25] KOZIOŁ A.P., Scales of turbulent eddies in a compound channel, Acta Geophys., 2015, 63, 514–532. DOI: 10.2478/s11600-014-0247-0.
  • [26] KOZIOŁ A.P., KUBRAK J., Measurements of turbulence structure in a compound channel, [In:], P. Rowiński, A. Radecki-Pawlik (Eds.), Rivers – Physical, Fluvial and Environmental Processes, GeoPlanet: Earth and Planetary Sciences, Springer, Cham 2015, 229–254. DOI: 10.1007/978-3-319-17719-9_10.
  • [27] BERTRAM H.U., The Flow in Trapezoidal Channels with Extreme Slope Roughness, Mitteilungen des Leicht-weiss-Instituts für Wasserbau der Technische Universität Braunschweig, 1985, Heft 86 (in German).
  • [28] KUBRAK J., NACHLIK E., Hydraulic fundamentals for calculating river channel capacity, Wydawnictwo SGGW, Warszawa 2003 (in Polish).
  • [29] GUNAWAN B., A Study of Flow Structures in a Two-Stage Channel Using Field Data. A Physical Model and Numerical Modelling, PhD Thesis, The University of Birmingham, Birmingham 2010.
  • [30] RICKERT K., The Influence of Vegetation on Light Conditions and Flow Behavior in Watercourses, Institute for Water Management, Hydrology, and Agricultural Water Engineering, University of Han-nover, Hanover 1986 (in German).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28840017-233d-43be-a146-c5b0c47aee07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.