PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Future sustainable maritime sector: energy efficiency improvement and environmental impact reduction for fishing carriers older than 20 years in the fleet. Part II

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the maritime sector to be sustainable and to have an intact blue economy, shipowners should be ready to implement Ship Energy Efficiency Management Plans alongside energy efficiency projects. The problem for organizations and shipowners having fishing carriers older than 20 years is highlighted and the following challenges arise for decision-making authorities. To keep such ships in the fleet for the next decade, shipowners should deploy energy efficiency projects for marine system retrofitting to improve energy efficiency and meet environmental regulations. An energy audit is performed and an energy efficiency program is proposed with guidelines for regulations that are currently coming into force. To improve energy efficiency, reduce the environmental impact, and cut fuel consumption costs, marine system retrofitting is done, in a particular case, with two options proposed. The first is a cascade refrigeration system with hydrocarbons and carbon dioxide, where the shipowner gains an energy efficiency improvement of about 20%. The second option is a two-stage refrigeration system with ammonium as the environmentally friendly refrigerant, which improves the energy efficiency by about 26%. Technical and economic issues have been discussed.
Rocznik
Tom
Strony
78--88
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Odesa National University of Technology, Refrigeration and Air-Conditioning Systems Department (RACS), V.S. Martynovsky Institute of Refrigeration, Cryotechnologies and Ecoenergetics Ukraine
  • Odesa National University of Technology, Refrigeration and Air-Conditioning Systems Department (RACS), V.S. Martynovsky Institute of Refrigeration, Cryotechnologies and Ecoenergetics Ukraine
  • Odesa National University of Technology, Refrigeration and Air-Conditioning Systems Department (RACS), V.S. Martynovsky Institute of Refrigeration, Cryotechnologies and Ecoenergetics Ukraine
  • Odesa National University of Technology, Refrigeration and Air-Conditioning Systems Department (RACS), V.S. Martynovsky Institute of Refrigeration, Cryotechnologies and Ecoenergetics Ukraine
Bibliografia
  • 1. Europa.eu. [Online]. Available: https://eur-lex.europa.eu/ legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0240 &rid=1. [Accessed: 28 Aug 2022].
  • 2. “MarineTraffic: Global Ship Tracking Intelligence,” Marinetraffic.com. [Online]. Available: https://www. marinetraffic.com/en/ais/home/centerx:21.1/centery:28.1/ zoom:2. [Accessed: 28 Aug 2022].
  • 3. F. Tillig, W. Mao, and J. W. Ringsberg, “Systems modelling for energy-efficient shipping,” Transportportal. se. [Online]. Available: https://www.transportportal.se/ Energieffektivitet/Systems%20modelling%20for%20 energy-efficient%20shipping.pdf. [Accessed: 28 Aug 2022].
  • 4. Rasanen, J.-E.; Schreiber, E.W. Using Variable Frequency Drives (VSD) to save energy and reduce emissions in newbuilds and existing ships, Energy efficient solutions, White Paper, ABB Marine and Cranes. Available online: https://library.e.abb.com/ public/a2bd960ccd43d82ac1257b0200442327/VFD%20 EnergyEfficiency_Rasanen_Schreiber_ABB_27%2004%20 2012.pdf [Accessed: 30 Sep 2022].
  • 5. S. Dallas, “Power quality analysis for greener shipping by implementing an on-board electric power quality monitoring system,” J. Mar. Eng. Technol., vol. 21, no. 3, pp. 125–135, 2022, doi: 10.1080/20464177.2019.1658281.
  • 6. M. Jaurola, A. Hedin, S. Tikkanen, and K. Huhtala, “Optimising design and power management in energy-efficient marine vessel power systems: a literature review,” J. Mar. Eng. Technol., vol. 18, no. 2, pp. 92–101, 2019, doi: 10.1080/20464177.2018.1505584.
  • 7. I. Gospić, I. Glavan, I. Poljak, and V. Mrzljak, “Energy, economic and environmental effects of the marine diesel engine trigeneration energy systems,” J. Mar. Sci. Eng., vol. 9, no. 7, p. 773, 2021, https://doi.org/10.3390/jmse9070773.
  • 8. V. Palomba, G. E. Dino, R. Ghirlando, C. Micallef, and A. Frazzica, “Decarbonising the shipping sector: A critical analysis on the application of waste heat for refrigeration in fishing vessels,” Appl. Sci. (Basel), vol. 9, no. 23, p. 5143, 2019, doi:10.3390/app9235143.
  • 9. S. Du, “Thermal analysis of a forced flow diffusion absorption refrigeration system for fishing-boat exhaust waste heat utilization”, Front. Energy Res., vol. 9, 2021, doi: 10.3389/fenrg.2021.761135
  • 10. Miro Petković, Marko Zubčić, Maja Krčum, Ivan Pavić “Wind assisted ship propulsion technologies – can they help in emissions reduction?,” Nase More, vol. 68, no. 2, pp. 102–109, 2021, doi:10.17818/NM/2021/2.6
  • 11. D. Karkosiński, W. A. Rosiński, P. Deinrych, and S. Potrykus, “Onboard energy storage and power management systems for all-electric cargo vessel concept,” Energies, vol. 14, no. 4, p. 1048, 2021, https://doi.org/10.3390/en14041048.
  • 12. O. Farhat, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, “A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations,” Cleaner Engineering and Technology, vol. 6, no. 100387, p. 100387, 2022, https://doi. org/10.1016/j.clet.2021.100387.
  • 13. J. Zhemin and Y. Yuxin, “Analysis of waste heat utilization of ship main engine,” E3S Web Conf., vol. 165, p. 06027, 2020, https://doi.org/10.1051/e3sconf/202016506027.
  • 14. Y. A. Chaboki, A. Khoshgard, G. Salehi, and F.Fazelpour, “Thermoeconomic analysis of a new waste heat recovery system for large marine diesel engine and comparison with two other configurations,” Energy Sources Recovery Util. Environ. Eff., pp. 1–26, 2020, doi: 10.1080/15567036.2020.1781298.
  • 15. L. Mihanović, M. Jelić, G. Radica, and N. Račić, “Experimental investigation of marine engine exhaust emissions,” Energy Sources Recovery Util. Environ. Eff., pp. 1–14, 2021, doi: 10.1080/15567036.2021.2013344
  • 16. UN Environment, “About Montreal protocol,” Ozonaction, 29 Oct 2018. [Online]. Available: https://www.unep. org/ozonaction/who-we-are/about-montreal-protocol. [Accessed: 28 Aug 2022].
  • 17. Unfccc.int, 1998. [Online]. Available: https://unfccc.int/ resource/docs/cop3/07a01.pdf. [Accessed: 28 Aug 2022].
  • 18. Europa.eu. [Online]. Available: https://ec.europa.eu/clima/ system/files/2020-03/swd_2019_406_en.pdf. [Accessed: 28 Aug 2022].
  • 19. “REFRIGERANT REPORT 21,” Bitzer-refrigerantreport. com. [Online]. Available: https://www.bitzer-refrigerantreport.com/fileadmin/Content/01_ Startseite/A-501-21_EN.pdf. [Accessed: 28 Aug 2022].
  • 20. J. Bodys, J. Smolka, and K. Banasiak, “Design and simulations of refrigerated sea water chillers with CO2 ejector pumps for marine applications in hot climates,” International Institute of Refrigeration (IIR), 2018, http:// dx.doi.org/10.18462/iir.gl.2018.1244.
  • 21. А. N. Noskov, Thermal and structural calculation of a refrigeration screw compressor: Educational and methodological manual. ITMO University, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2881177c-d2c7-4573-a79a-aa905b1d4c0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.