PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of introducing Active Suspension System in vehicles is to reduce the vehicle body motion under road obstacles which improves the ride comfort of the passenger. In this paper, the Full Car Model (FCM) with seven Degrees of Freedom is considered and simulated by MATLAB/Simulink. The Terminal Sliding Mode Controller (TSMC) and Fractional Order Terminal Sliding Mode Controller (FOTSMC) are designed to enhance the ride quality, stability and passenger comfort for FCM. The designed FOTSMC has the ability to provide higher control accuracy in a finite time. The performances of the designed controllers are evaluated by measuring the vehicle body vibration in both angular and vertical direction under bump input and ISO-8608 random input against passive suspension system. The Frequency Weighted Root Mean Square (FWRMS) and Vibration dose value of Body Acceleration as per ISO-2631 are evaluated for FOTSMC, TSMC and PSS. The stability of the FCM is proved by Lyapunouv theory. Further analysis with sprung mass and speed variation of FCM demonstrate the robustness of proposed controller. To investigate the performances of designed controllers, comparison is made with existing Sliding Mode Controller (SMC) which proves that the designed FOTSMC performs better than existing SMC.
Rocznik
Strony
295--324
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Department of Electrical and Electronics Engineering, CEG, Anna University, Chennai, 600 025 India
autor
  • Department of Electrical and Electronics Engineering, CEG, Anna University, Chennai, 600 025 India
  • Department of Electronics and Instrumentation Engineering, Pondicherry Engineering College, Puduchery, 605 014 India
Bibliografia
  • [1] Da-Shan Huang, Jin-Qiu Zhang, and Yi-Le Liu: The pid semi-active vibration control on nonlinear suspension system with time delay, International Journal of Intelligent Transportation Systems Research, 1-13, 2018.
  • [2] S. Kilicaslan: Control of active suspension system considering nonlinear actuator dynamics, Nonlinear Dynamics, 91(2) (2018) 1383-1394.
  • [3] Zhi-Jun Fu, Bin Li, Xiao-Bin Ning, and Wei-Dong Xie: Online adaptive optimal control of vehicle active suspension systems using single-network approximate dynamic programming, Mathematical Problems in Engineering, 2017.
  • [4] Y. Abdulhammed and H. Elsherif: Development of a new automotive active suspension system, In IOP Conference Series: Materials Science and Engineering, volume 280, page 012024, IOP Publishing, 2017.
  • [5] S. Rajendiran, P. Lakshmi, and B. Rajkumar: Reduction of body acceleration in the quarter car model using fractional order fuzzy sliding mode controller, International Journal of Vehicle Structures & Systems (IJVSS), 9(2) (2017).
  • [6] H. Khodadadi and H. Ghadiri: Self-tuning pid controller design using fuzzy logic for half car active suspension system, International Journal of Dynamics and Control, 6(1) (2018), 224-232.
  • [7] C. R. Hua, Y. Zhao, Z. W. Lu, and H. Ouyang: Random vibration of vehicle with hysteresis nonlinear suspension under road roughness excitation, Advances in Mechanical Engineering, 10(1) (2018), 1687814017751222.
  • [8] Gang Wang, Changzheng Chen, and Shenbo Yu: Optimization and static output-feedback control for half-car active suspensions with constrained information, Journal of Sound and Vibration, 378 (2016), 1-13.
  • [9] Huihui Pan, Weichao Sun, Xingjian Jing, Huijun Gao, and Jianyong Yao: Adaptive tracking control for active suspension systems with non-ideal actuators, Journal of Sound and Vibration, 399 (2017), 2-20.
  • [10] Ch. Göhrle, A. Schindler, A. Wagner, and O. Sawodny: Road profile estimation and preview control for low-bandwidth active suspension systems, IEEE/ASME Transactions on Mechatronics, 20(5) (2015), 2299-2310.
  • [11] K. Rajeswari and P. Lakshmi: Ga tuned distance based fuzzy sliding mode controller for vehicle suspension systems, International Journal of Engineering and Technology, 5(1) (2008), 36-47.
  • [12] Yinlong Hu, Michael Z. Q. Chen, and Zhongsheng Hou: Multiplexed model predictive control for active vehicle suspensions, International Journal of Control, 88(2) (2015), 347-363.
  • [13] Hung-Yi Chen and Shiuh-Jer Huang: A new model-free adaptive sliding controller for active suspension system, International Journal of Systems Science, 39(1) (2008), 57-69.
  • [14] N. Yagiz and I. Yüksek: Robust control of active suspensions using sliding modes, Turkish Journal of Engineering and Environmental Sciences, 25(2) (2001), 79-87.
  • [15] N. S. Bhangal and K. A. Raj: Fuzzy control of vehicle active suspension system, International Journal of Mechanical Engineering and Robotics Research, 5(2) (2016), 144-148.
  • [16] M. Du, D. Zhao, B. Yang, and L. Wang: Terminal sliding mode control for full vehicle active suspension systems, Journal of Mechanical Science and Technology, 32(6) (2018), 2851-2866.
  • [17] Chia-Ping Cheng, Chan-Hong Chao, and Tzuu-Hseng S. Li: Design of observer-based fuzzy sliding-mode control for an active suspension system with full-car model, In Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on, pages 1939-1944, IEEE, 2010.
  • [18] Chia Ping Cheng and Tzuu-Hseng S. Li: Ep-based fuzzy control design for an active suspension system with full-car model, In Systems, Man and Cybernetics, 2007, ISIC, IEEE International Conference on, pages 3288-3293, IEEE, 2007.
  • [19] K. D. Young, V. I. Utkin, and U. Ozguner: A control engineer’s guide to sliding mode control, In IEEE International Workshop on Variable Structure Systems, 1996, Proceedings, pages 1-14, IEEE, 1996.
  • [20] M. Moradi and A. Fekih: Astability guaranteed robust fault tolerant control design for vehicle suspension systems subject to actuator faults and disturbances, IEEE Transactions on Control Systems Technology, 23(3) (2015), 1164-1171.
  • [21] Hui Pang, Xu Zhang, and Zeren Xu: Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints, ISA Transactions, 88 (2019), 23-36.
  • [22] Hui Pang, Yan Wang, Xu Zhang, and Zeren Xu: Robust state-feedback control design for active suspension system with time-varying input delay and wheelbase preview information, Journal of the Franklin Institute, 356(4) (2019), 1899-1923.
  • [23] J. Mrazgua, T. El Houssaine, and M. Ouahi: Fuzzy fault-tolerant hꚙ control approach for nonlinear active suspension systems with actuator failure, Procedia Computer Science, 148 (2019), 465-474.
  • [24] A. P. Meran and Ü. Önen: Vibration analysis of a novel magnetic-viscous nonlinear passive isolator via finite element simulation, Turkish Journal of Electrical Engineering and Computer Science, 27(3) (2019), 2309-2320.
  • [25] Jing Zhao, Pak Kin Wong, Zhengchao Xie, Xinbo Ma, and Xingqi Hua: Design and control of an automotive variable hydraulic damper using cuckoo search optimized pid method, International Journal of Automotive Technology, 20(1) (2019), 51-63.
  • [26] Ahmed Shehata Gad, Helmy Mohamed El-Zoghby, Walid Abd El-Hady Oraby, and Samir Mohamed El-Demerdash: Performance and behaviour of a magneto-rheological damper in a semi-active vehicle suspension and power evaluation, American Journal of Mechanical Engineering and Automation, 5(3) (2018), 72-89.
  • [27] W. Sun, H. Gao, and B. Yao: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators, IEEE Transactions on Control Systems Technology, 21(6) (2013), 2417-2422.
  • [28] N. Zhang, L. Wang, and H. Du: Motion-mode energy method for vehicle dynamics analysis and control, Vehicle System Dynamics, 52(1) (2014), 1-25.
  • [29] P. Gáspár, I. Szaszi, and J. Bokor: Design of robust controllers for active vehicle suspension using the mixed _ synthesis, Vehicle system dynamics, 40(4) (2003), 193–228.
  • [30] R. Darus and Y. M. Sam: Modeling and control active suspension system for a full car model, In Signal Processing & Its Applications, 2009. CSPA 2009, 5th International Colloquium on, pages 13-18, IEEE, 2009.
  • [31] C. Kim and P. I. Ro: An accurate full car ride model using model reducing techniques, Journal of Mechanical Design, 124(4) (2002), 697-705.
  • [32] Zifan Fang, Wenhui Shu, Daojia Du, Bingfei Xiang, Qingsong He, and Kongde He: Semi-active suspension of a full-vehicle model based on double-loop control, Procedia Engineering, 16 (2011), 428-437.
  • [33] T. Yuvapriya, P. Lakshmi, and S. Rajendiran: Vibration suppression in full car active suspension system using fractional order sliding mode controller, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4) (2018), 217-226.
  • [34] V. Behnamgol and A. R. Vali: Terminal sliding mode control for nonlinear systems with both matched and unmatched uncertainties, Iranian Journal of Electrical & Electronic Engineering, 11(2) (2015), 109.
  • [35] S. Rajendiran, P. Lakshmi, and B. Rajkumar: Enhancing travel comfort of quarter car with driver model using fractional order terminal sliding mode controller with dual actuator, Journal of Electrical Engineering, 16(4) (2016), 203–214.
  • [36] A. Kuznetsov, M. Mammadov, I. Sultan, and E. Hajilarov: Optimization of improved suspension system with inerter device of the quarter-car model in vibration analysis, Archive of Applied Mechanics, 81(10) (2011), 1427-1437.
  • [37] Maria Lúcia Machado Duarte, Priscila Albuquerque de Araújo, Frederico Catone Horta, Sara Del Vecchio, and Lucas Augusto Penna de Carvalho: Correlation between weighted acceleration, vibration dose value and exposure time on whole body vibration comfort levels evaluation, Safety Science, 103 (2018), 218-224.
  • [38] J.-J. E. Slotine and W. Li: Applied nonlinear control, volume 199. Prentice hall Englewood Cliffs, NJ, 1991.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28800877-486a-4e4a-b7a9-e76384d489eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.