Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Despite the diversity of available formulations for relieving topical symptoms of chronic skin diseases, inflammation, and hypergranulation tissue resulting from burn wounds, their efficacy is limited by side effects, application inconveniences, including the oiliness of the formulations, and the need for frequent application, which can affect patient compliance. Therefore, research has been carried out on freeze-dried hydrogel delivery systems of hydrocortisone, to evaluate their physicochemical (gel fraction, swelling ratio, pH and conductivity measurements), structural (FTIR), and morphological (SEM) properties, as well as their cytotoxicity (MTT tests). The gel fraction of freeze-dried hydrogel biomaterials (M-TH25 and M-TH50) reached 64% ± 0.3 and 63% ± 1.7, respectively, slightly higher than for the reference matrix (M) (61 ± 0.8). The swelling ratio (pH = 7.4) was in the range of 212–253% and 184–222%, respectively, comparable to the reference sample (208–277%). The incorporation of a thermosensitive polymeric nanocarriers (poly-N-isopropylacrylamide copolymers) containing hydrocortisone in the quantitative range 25–50 mg did not significantly change the overall morphology of the biomaterials. Both M and M-TH25 samples exhibit non-cytotoxicity towards mouse fibroblast cells BALB/3T3 (93% ± 10; 100% ± 8) and L929 (114% ± 8; 72% ± 10) cells with an observable variation in response for the M-TH25 sample, likely due to differences in cell behaviour and surface area. Importantly, M-TH50 sample shows cytotoxic effects (40% ± 5; 59% ± 4) mainly resulting from an excessively high concentration of the incorporated active substance. Further studies are planned (including on the release profile and kinetics of hydrocortisone and the assessment of the therapeutic effect), which may help to select an appropriate concentration of drug in the quantitative range 25-40 mg
Czasopismo
Rocznik
Tom
Strony
art. no. 3
Opis fizyczny
Bibliogr. 68 poz., tab., wykr., zdj.
Twórcy
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska St., 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska St., 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, 24 Warszawska St., 31-155 Cracow, Poland
Bibliografia
- [1] Brannon-Peppas L.: Preparation and Characterization of Crosslinked Hydrophilic Networks. Studies in Polymer Science 8 (1990) 45-66.
- [2] Peppas N.A., Hilt J.Z., Khademhosseini A., Langer R.: Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials 18 (2006) 1345-1360, doi:10.1002/adma.200501612.
- [3] Jayakumar A., Jose V.K., Lee J.-M.: Hydrogels for Medical and Environmental Applications. Small Methods 4 (2020) 1900735, doi:10.1002/smtd.201900735.
- [4] Smith W.: Report on the Exhibits Relating to the Chemical Industries, in the International Inventions Exhibition, wyd. Emmott, London 1885.
- [5] Sanchez-Ballester N.M., Bataille B., Soulairol I.: Sodium Alginate and Alginic Acid as Pharmaceutical Excipients for Tablet Formulation: Structure-Function Relationship. Carbohydrate Polymers 270 (2021) 118399, doi:10.1016/j.carbpol.2021.118399.
- [6] Jin L., Qi H., Gu X., Zhang X., Zhang Y., Zhang X., Mao S.: Effect of Sodium Alginate Type on Drug Release from Chitosan-Sodium Alginate-Based In Situ Film-Forming Tablets. AAPS PharmSciTech 21 (2020) 55, doi:10.1208/s12249-019-1549-y.
- [7] Huq T., Vu K.D., Riedl B., Bouchard J., Han J., Lacroix M.: Development of Probiotic Tablet Using Alginate, Pectin, and Cellulose Nanocrystals as Excipients. Cellulose 23 (2016) 1967-1978, doi:10.1007/s10570-016-0905-2.
- [8] Noppakundilograt S., Piboon P., Graisuwan W., Nuisin R., Kiatkamjornwong S.: Encapsulated Eucalyptus Oil in Ionically Cross-Linked Alginate Microcapsules and Its Controlled Release. Carbohydrate Polymers 131 (2015) 23-33, doi:10.1016/j.carbpol.2015.05.054.
- [9] Tian Y., Liu Y., Zhang L., Hua Q., Liu L., Wang B., Tang J.: Preparation and Characterization of Gelatin-Sodium Alginate/Paraffin Phase Change Microcapsules. Colloids and Surfaces A Physicochemical and Engineering Aspects 586 (2020) 124216, doi:10.1016/j.colsurfa.2019.124216.
- [10] Saenz del Burgo L., Ciriza J., Espona-Noguera A., Illa X., Cabruja E., Orive G. et al.: 3D Printed Porous Polyamide Macrocapsule Combined with Alginate Microcapsules for Safer Cell-Based Therapies. Scientific Reports 8 (2018) 8512, doi:10.1038/s41598-018-26869-5.
- [11] Kim J.O., Park J.K., Kim J.H., Jin S.G., Yong C.S., Li D.X. et al.: Development of Polyvinyl Alcohol–Sodium Alginate Gel-Matrix--Based Wound Dressing System Containing Nitrofurazone. International Journal of Pharmaceutics 359 (2008) 79-86, doi:10.1016/j.ijpharm.2008.03.021.
- [12] Liang L., Hou T., Ouyang Q., Xie L., Zhong S., Li P., Li S., Li C.-P.: Antimicrobial Sodium Alginate Dressing Immobilized with Polydopamine-Silver Composite Nanospheres. Composites Part B: Engineering 188 (2020) 107877, doi:10.1016/j.compositesb.2020.107877.
- [13] Pandima Devi M., Sekar M., Chamundeswari M., Moorthy A., Krithiga G., Murugan N.S., Sastry T.P.: A Novel Wound Dressing Material—Fibrin–Chitosan–Sodium Alginate Composite Sheet. Bulletin of Materials Science 35 (2012) 1157-1163, doi:10.1007/s12034-012-0404-5.
- [14] Wu Z., Li Q., Xie S., Shan X., Cai Z.: In Vitro and in Vivo Biocompatibility Evaluation of a 3D Bioprinted Gelatin-Sodium Alginate/Rat Schwann-Cell Scaffold. Materials Science and Engineering: C 109 (2020) 110530, doi:10.1016/j.msec.2019.110530.
- [15] Chung C.-W., Kang J.Y., Yoon I.-S., Hwang H.-D., Balakrishnan P., Cho H.-J. et al.: Interpenetrating Polymer Network (IPN) Scaffolds of Sodium Hyaluronate and Sodium Alginate for Chondrocyte Culture. Colloids and Surfaces B: Biointerfaces 88 (2011) 711-716, doi:10.1016/j.colsurfb.2011.08.005.
- [16] Wang Y., Wang X., Shi J., Zhu R., Zhang J., Zhang Z. et al.: A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Scientific Reports 6 (2016) 39477, doi:10.1038/srep39477.
- [17] Xia H., Zhao D., Zhu H., Hua Y., Xiao K., Xu Y. et al.: Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration. ACS Applied Materials & Interfaces 10 (2018) 31704-31715, doi:10.1021/acsami.8b10926.
- [18] Odziomek K., Drabczyk A.K., Kościelniak P., Konieczny P., Barczewski M., Bialik-Wąs K.: The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use. Pharmaceuticals 17 (2024) 1512, doi:10.3390/ph17111512.
- [19] Guziewicz N., Best A., Perez-Ramirez B., Kaplan D.L.: Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies. Biomaterials 32 (2011) 2642-2650, doi:10.1016/j.biomaterials.2010.12.023.
- [20] Fereshteh Z.: Freeze-Drying Technologies for 3D Scaffold Engineering. In: Deng Y., Kuiper J. (Eds.) Functional 3D Tissue Engineering Scaffolds, wyd. Woodhead Publishing, Cambridge 2018.
- [21] Autissier A., Visage C.L., Pouzet C., Chaubet F., Letourneur D.: Fabrication of Porous Polysaccharide-Based Scaffolds Using a Combined Freeze-Drying/Cross-Linking Process. Acta Biomaterialia 6 (2010) 3640-3648, doi:10.1016/j.actbio.2010.03.004.
- [22] Abla K.K., Mehanna M.M.: Freeze-Drying: A Flourishing Strategy to Fabricate Stable Pharmaceutical and Biological Products. International Journal of Pharmaceutics 628 (2022) 122233, doi:10.1016/j.ijpharm.2022.122233
- [23] Yavuz M., Erginer M., Kasavi C., Toksoy Oner E.: Enhanced Preservation of Viability and Species Stratification in Lacticaseibacillus Group Using Levan-Fortified Skim Milk as a Cryoprotectant during Freeze-Drying. Food Science and Biotechnology 34 (2025) 1605-1616, doi:10.1007/s10068-024-01802-x.
- [24] Sun Y., Xie Y., Zou H., Chen Y., Wen Z., Liang Q. et al.: Fabrication and Application of Multifunctional Conductive Hydrogel Film for Wearable Sensors via Efficient Freeze-Thaw Cycling and Annealing Process. Chemical Engineering Journal 495 (2024) 153487, doi:10.1016/j.cej.2024.153487.
- [25] Muhoza B., Yuyang H., Uriho A., Harindintwali J.D., Liu Q., Li Y.: Spray- and Freeze-Drying of Microcapsules Prepared by Complex Coacervation Method: A Review. Food Hydrocolloids 140 (2023) 108650, doi:10.1016/j.foodhyd.2023.108650.
- [26] Bialik-Wąs K., Miastkowska M., Sapuła P., Pluta K., Malina D., Chwastowski J., Barczewski M.: Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 14 (2022) 773, doi:10.3390/pharmaceutics14040773.
- [27] Palmese L.L., Thapa R.K., Sullivan M.O., Kiick K.L.: Hybrid Hydrogels for Biomedical Applications. Current Opinion in Chemical Engineering 24 (2019) 143-157, doi:10.1016/j.coche.2019.02.010.
- [28] Chircov C., Ioniță D.-A., Sîrmon A.-M., Neacșu I.A., Ficai A.: Natural, Synthetic, Hybrid and Composite Biomaterials for Neural Tissue Engineering. In: Gunduz O., Ustundag C.B., Sengor M. (Eds.) Biomaterials for Neural Tissue Engineering, wyd. Woodhead Publishing, Cambridge 2023.
- [29] Luo M., Shaitan K., Qu X., Bonartsev A.P., Lei B.: Bioactive Rare Earth-Based Inorganic-Organic Hybrid Biomaterials for Wound Healing and Repair. Applied Materials Today 26 (2022) 101304, doi:10.1016/j.apmt.2021.101304.
- [30] Jiang Y.-Y., Zhu Y.-J., Li H., Zhang Y.-G., Shen Y.-Q., Sun T.-W., Chen F.: Preparation and Enhanced Mechanical Properties of Hybrid Hydrogels Comprising Ultralong Hydroxyapatite Nanowires and Sodium Alginate. Journal of Colloid and Interface Science 497 (2017) 266-275, doi:10.1016/j.jcis.2017.03.032.
- [31] Chang S., Wang J., Xu N., Wang S., Cai H., Liu Z., Wang X.: Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration. Gels 8 (2022) 745, doi:10.3390/gels8110745.
- [32] Hu C., Wang M.X., Sun L., Yang J.H., Zrínyi M., Chen Y.M.: Dual-Physical Cross-Linked Tough and Photoluminescent Hydrogels with Good Biocompatibility and Antibacterial Activity. Macromolecular Rapid Communications 38 (2017) 1600788, doi:10.1002/marc.201600788.
- [33] Wang L., Zhou M., Xu T., Zhang X.: Multifunctional Hydrogel as Wound Dressing for Intelligent Wound Monitoring. Chemical Engineering Journal 433 (2022) 134625, doi:10.1016/j.cej.2022.134625.
- [34] Teoh J.H., Mozhi A., Sunil V., Tay S.M., Fuh J., Wang C.-H.: 3D Printing Personalized, Photocrosslinkable Hydrogel Wound Dressings for the Treatment of Thermal Burns. Advanced Functional Materials 31 (2021) 2105932, doi:10.1002/adfm.202105932.
- [35] Tan X., Feldman S.R., Chang J., Balkrishnan R.: Topical Drug Delivery Systems in Dermatology: A Review of Patient Adherence Issues. Expert Opinion on Drug Delivery 9 (2012) 1263-1271, doi:10.1517/17425247.2012.711756.
- [36] Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F.: Overview of Natural Hydrogels for Regenerative Medicine Applications. Journal of Materials Science: Materials in Medicine 30 (2019) 115, doi:10.1007/s10856-019-6318-7.
- [37] Lee K.Y., Mooney D.J.: Hydrogels for Tissue Engineering. Chemical Reviews 101 (2001) 1869-1880, doi:10.1021/cr000108x.
- [38] Polley H.F., Mason H.L.: Rheumatoid Arthritis: Effects of Certain Steroids Other Than Cortisone and of Some Adrenal Cortex Extracts. Journal of the American Medical Association 143 (1950) 1474-1481, doi:10.1001/jama.1950.02910520016007.
- [39] Sulzberger M.B., Witten V.H.: The Effect of Topically Applied Compound F in Selected Dermatoses. Journal of Investigative Dermatology 19 (1952) 101-102, doi:10.1038/jid.1952.72.
- [40] Witten V.H., Amler A.B., Sulzberger M.B., DeSanctis A.G.: Hydrocortisone Ointment in the Treatment of Infantile Eczema. American Journal of Diseases of Children 87 (1954) 298-304, doi:10.1001/archpedi.1954.02050090286004.
- [41] Sulzberger M.B., Witten V.H.: Hydrocortisone Ointment in Dermatological Therapy. Medical Clinics of North America 38 (1954) 321-336, doi:10.1016/S0025-7125(16)34877-5.
- [42] Sulzberger M.B., Witten V.H.: Prolonged Therapy with Cortisone for Chronic Skin Diseases. Journal of the American Medical Association 155 (1954) 954-959, doi:10.1001/jama.1954.03690290004002.
- [43] Friedlaender S., Friedlaender A.S.: Oral Cortisone Therapy in Allergic Disease. Journal of Allergy 22 (1951) 291-303, doi:10.1016/0021-8707(51)90030-5.
- [44] Feinberg S.M., Dannenberg T.B., Malkiel S.: ACTH and Cortisone in Allergic Manifestations; Therapeutic Results and Studies on Immunological and Tissue Reactivity. Journal of Allergy 22 (1951) 195-210, doi:10.1016/0021-8707(51)90015-9.
- [45] Bangham A.D.: The Effect of Cortisone on Wound Healing. British Journal of Experimental Pathology 32 (1951) 77-84.
- [46] Jaeger M., Harats M., Kornhaber R., Aviv U., Zerach A., Haik J.: Treatment of Hypergranulation Tissue in Burn Wounds with Topical Steroid Dressings: A Case Series. International Medical Case Reports Journal 9 (2016) 241-245, doi:10.2147/IMCRJ.S113182.
- [47] Hughes J., Rustin M.: Corticosteroids. Clinics in Dermatology 15 (1997) 715-721, doi:10.1016/S0738-081X(97)00020-5.
- [48] Oakley R.H., Cidlowski J.A.: Homologous Down-Regulation of the Glucocorticoid Receptor: The Molecular Machinery. Critical Reviews in Eukaryotic Gene Expression 3 (1993) 63-88.
- [49] Nicolaides N.C., Charmandari E., Chrousos G.P., Kino T.: Recent Advances in the Molecular Mechanisms Determining Tissue Sensitivity to Glucocorticoids: Novel Mutations, Circadian Rhythm and LigandInduced Repression of the Human Glucocorticoid Receptor. BMC Endocrine Disorders 14 (2014) 71, doi:10.1186/1472-6823-14-71.
- [50] Cain D.W., Cidlowski J.A.: Immune Regulation by Glucocorticoids. Nat. Rev. Immunol. 17 (2017) 233-247, doi:10.1038/nri.2017.1.
- [51] Ignarro L.J.: Glucocorticosteroid Inhibition of Nonphagocytic Discharge of Lysosomal Enzymes from Human Neutrophils. Arthritis & Rheumatism 20 (1977) 73-83, doi:10.1002/art.1780200114.
- [52] Hengge U.R., Ruzicka T., Schwartz R.A., Cork M.J.: Adverse Effects of Topical Glucocorticosteroids. Journal of the American Academy of Dermatology 54 (2006) 1-15, doi:10.1016/j.jaad.2005.01.010.
- [53] Cevc G., Blume G.: Hydrocortisone and Dexamethasone in Very Deformable Drug Carriers Have Increased Biological Potency, Prolonged Effect, and Reduced Therapeutic Dosage. Biochimica et Biophysica Acta – Biomembranes 1663 (2004) 61-73, doi:10.1016/j.bbamem.2004.01.006.
- [54] Chen S., Jiang X., Sun L.: Reaction Mechanisms of N-Isopropylacrylamide Soap-Free Emulsion Polymerization Based on Two Different Initiators. Journal of Macromolecular Science – Part A 51 (2014) 447-455, doi:10.1080/10601325.2014.893144.
- [55] Yan X., Gemeinhart R.A.: Cisplatin Delivery from Poly(Acrylic Acid-co-Methyl Methacrylate) Microparticles. Journal of Controlled Release 106 (2005) 198-208, doi:10.1016/j.jconrel.2005.05.005.
- [56] Bialik-Wąs K., Miastkowska M., Sapuła P., Sycz A., Pluta K., Malina D., Chwastowski J.: Kinetic Analysis of in Vitro Release Profiles of Salicylic Acid and Fluocinolone Acetonide from Dual Delivery Systems Composed of Polymeric Nanocarriers and a Hydrogel Matrix. Journal of Drug Delivery Science and Technology 92 (2024) 105355, doi:10.1016/j.jddst.2024.105355.
- [57] Bialik-Wąs K., Malina D., Pluta K., Miastkowska M.: Sposób Wprowadzania Hydrofobowych Leczniczych Substancji Czynnych, Tworzących Układ z Termoczułym Nanonośnikiem, do Hydrofilowej Matrycy Opatrunku Hydrożelowego. Patent PL 2021.
- [58] Bialik-Wąs K., Pluta K., Malina D., Barczewski M., Malarz K., Mrozek-Wilczkiewicz A.: Advanced SA/PVA-Based Hydrogel Matrices with Prolonged Release of Aloe Vera as Promising Wound Dressings. Materials Science and Engineering: C 120 (2021) 111667, doi:10.1016/j.msec.2020.111667.
- [59] Bialik-Wąs K., Królicka E., Malina D.: Impact of the Type of Crosslinking Agents on the Properties of Modified Sodium Alginate/Poly(vinyl Alcohol) Hydrogels. Molecules 26 (2021) 2381, doi:10.3390/molecules26082381.
- [60] Bialik-Wąs K., Pluta K., Malina D., Barczewski M., Malarz K., Mrozek-Wilczkiewicz A.: The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl Alcohol)-Based Hydrogels for Wound Dressing Application. International Journal of Molecular Sciences 22 (2021) 12022, doi:10.3390/ijms222112022.
- [61] Bialik-Wąs K., Raftopoulos K.N., Pielichowski K.: Alginate Hydrogels with Aloe Vera: The Effects of Reaction Temperature on Morphology and Thermal Properties. Materials 15 (2022) 748, doi:10.3390/ma15030748.
- [62] Bialik-Wąs K., Malina D., Pluta K.: Sposób Otrzymywania Hydrożelowych Materiałów Opatrunkowych. Patent PL 2020.
- [63] Ahmed E.M.: Hydrogel: Preparation, Characterization, and Applications – A Review. Journal of Advanced Research 6 (2015) 105-121, doi:10.1016/j.jare.2013.07.006.
- [64] Peppas N.A., Khare A.R.: Preparation, Structure and Diffusional Behavior of Hydrogels in Controlled Release. Advanced Drug Delivery Reviews 11 (1993) 1-35, doi:10.1016/0169-409X(93)90025-Y.
- [65] Khan S., Ranjha N.M.: Effect of Degree of Cross-Linking on Swelling and on Drug Release of Low Viscous Chitosan/Poly(vinyl Alcohol) Hydrogels. Polymer Bulletin 71 (2014) 2133-2158, doi:10.1007/s00289-014-1178-2.
- [66] Lee K.Y., Rowley J.A., Eiselt P., Moy E.M., Bouhadir K.H., Mooney D.J.: Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules 33 (2000) 4291-4294, doi:10.1021/ma9921347.
- [67] Pal K., Banthia A.K., Majumdar D.K.: Polymeric Hydrogels: Characterization and Biomedical Applications. Designed Monomers and Polymers 12 (2009) 197-220, doi:10.1163/156855509X436030.
- [68] Biological Evaluation of Medical Devices - Part 5: Tests for in Vitro Cytotoxicity: In ANSI/AAMI/ISO 10993-5:2009/(R)2014, wyd. Arlington, USA 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-287e91be-f92b-42be-9aac-9de7d372f4d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.