PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the selection of materials for road construction taking into account the carbon footprint and construction costs

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Koszty materiałów drogowych w ujęciu kryterium minimalizacji wartości miary śladu węglowego
Języki publikacji
EN
Abstrakty
EN
The analysis of the costs and emissions of greenhouse gases for individual phases of construction investments allows for the implementation of solutions and the prevention of negative environmental impacts without significantly increasing construction costs. The share of individual investment phases in the amount of carbon dioxide (CO2) produced for the construction and use of buildings depends mainly on the materials used and the implemented design solutions. In accordance with the idea of sustainable construction, materials and design solutions with the lowest possible carbon footprint should be used. This can be achieved by using natural building materials, materials subjected to appropriate chemical composition modifications, or materials in which their production does not require large amounts of energy. The aim of the article is to determine the value of the purchase costs of selected road materials (concrete paving blocks, cement-sand bedding, concrete curbs, semi-dry concrete and concrete underlay, washed sand, and crushed aggregate with a fraction of 0-31.5 mm) for the implementation of a road investment. In addition, the authors focused on determining the size of the embodied carbon footprint due to GHG (greenhouse gas) emissions and GHG removals in a product system, expressed as CO2 equivalents for the same materials that were subjected to cost analyzes. The article presents the results of original analyzes, and indicates the optimal solutions in terms of minimizing the cost of purchasing road materials and minimizing the carbon footprint. The discussion also covers the issue of changing the chemical composition in the context of the potential impact on the reduction of material costs and CO2 equivalent emissions.
PL
Analiza kosztów i emisji gazów cieplarnianych dla poszczególnych faz inwestycji budowlanych pozwala na wdrożenie rozwiązań i zapobieganie negatywnemu wpływowi na środowisko bez znaczącego zwiększania kosztów budowy. Udział poszczególnych faz inwestycji w ilości wytworzonego dwutlenku węgla (CO2) do budowy i użytkowania obiektów budowlanych zależy głownie od zastosowanych materiałów i wdrożonych rozwiązań projektowych. Zgodnie z ideą budownictwa zrównoważonego, winno się stosować materiały i rozwiązania projektowe o możliwie najmniejszym śladzie węglowym. Celem artykułu jest określenie wielkości kosztów nabycia wybranych materiałów drogowych na wykonanie inwestycji drogowej. Dodatkowo autorzy skupili się na określeniu wartości wbudowanego śladu węglowego w procesie produkcji budowlanej, który wyrażany jest w postaci ekwiwalentu CO2 dla tych samych materiałów, które poddano analizom kosztowym. W artykule przedstawiono wyniki autorskich analiz, wskazano rozwiązania optymalne z uwagi na minimalizacje kosztów nabycia materiałów drogowych i minimalizację śladu węglowego.
Rocznik
Strony
199--219
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
  • Cracow University of Technology, Faculty of Civil Engineering, Kraków, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Kraków, Poland
Bibliografia
  • [1] A.M.G.P. Abeysinghe, K.G.A.S. Waidyasekara, D.G. Melagoda, “Beyond Site Material Handling and Transportation in Large-Scale Construction Projects”, in 2018 Moratuwa Engineering Research Conference (MERCon). 2018, pp. 66-71, DOI: 10.1109/MERCon.2018.8421893.
  • [2] P. Adhikari, H. Mahmoud, A. Xie, K. Simonen, B. Ellingwood, “Life-cycle cost and carbon footprint analysis for light-framed residential buildings subjected to tornado hazard”, Journal of Building Engineering, vol. 32, 2020, art. ID 101657, DOI: 10.1016/j.jobe.2020.101657.
  • [3] P. Andreo-Martínez, V.M. Ortiz-Martínez, A. Muñoz, P. Menchón-Sánchez, J. Quesada-Medina, “A web application to estimate the carbon footprint of constructed wetlands”, Environmental Modelling & Software, 2021, vol. 135, art. ID 104898, DOI: 10.1016/j.envsoft.2020.104898.
  • [4] M.A. Bouh, D. Riopel, “Material handling equipment selection: new classifications of equipments and attributes”, presented at 6th IESM Conference, 2015.
  • [5] W.T. Chaote, Energy and Emission Reduction Opportunities for the Cement Industry. U.S. Department of Energy, 2003.
  • [6] A.R. Djamaluddin, M.A. Caronge, M.W. Tjaronge, A.T. Lando, R. Irmawaty, “Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash”, Case Studies in Construction Materials, 2020, vol. 12, art. ID: e00325, DOI: 10.1016/j.cscm.2019.e00325.
  • [7] Y.H. Dong, L. Jaillon, P. Chu, C.S. Poon, “Comparing carbon emissions of precast and cast-in-situ construction methods - A case study of high-rise private building”, Construction and Building Materials, 2015, vol. 99, pp. 39-53, DOI: 10.1016/j.conbuildmat.2015.08.145.
  • [8] A. Duchaczek, “Optymalizacja wyboru pojazdów ciężarowych wykorzystywanych podczas realizacji przedsięwzięć budowlanych”, Zeszyty Naukowe Politechniki Poznańskiej: Organizacja i Zarządzanie, vol. 65, 2015, pp. 5-18.
  • [9] M. Gao, H. Huang, X. Li, X.Z. Liu, “Carbon emission analysis and reduction for stamping process chain”, The International Journal of Advanced Manufacturing Technology, 2017, vol. 91, pp. 667-678, DOI: 10.1007/s00170-016-9732-8.
  • [10] H. Golpîra, “Optimal integration of the facility location problem into the multi-project multi-supplier multiresource Construction Supply Chain network design under the vendor managed inventory strategy”, Expert Systems with Applications, 2020, vol. 139, pp. 1-12, DOI: 10.1016/j.eswa.2019.112841.
  • [11] P. Jaśkowski, A. Sobotka, A. Czarnigowska, “Decision model for planning material supply channels in construction”, Automation in Construction, 2018, vol. 90, pp. 235-242, DOI: 10.1016/j.autcon.2018.02.026.
  • [12] M.A. Musarat, W.S. Alaloul, M.S. Liew, A. Maqsoom, A.H. Qureshi, “Investigating the impact of inflation on building materials prices in construction industry”, Journal of Building Engineering, 2020, vol. 32, art. ID. 101485, DOI: 10.1016/j.jobe.2020.101485.
  • [13] F.A. Oginni, M.A. Ogunbiyi, S.O. Balogun, “Comparative Study of Price Variations of Basic Civil Engineering Construction Materials”, Energy and Environment Research, 2014, vol. 4, no. 3; pp. 50-57, DOI: 10.5539/eer.v4n3p50.
  • [14] S.K. Pal, A. Takano, K. Alanne, K. Siren, “A life cycle approach to optimizing carbon footprint and costs of a residential building”, Building and Environment, 2017, vol. 123, pp. 146-162, DOI: 10.1016/j.buildenv.2017.06.051.
  • [15] J. Pasławski, T. Rudnicki, “Agile/Flexible and Lean Management in Ready-Mix Concrete Delivery”, Archives of Civil Engineering, 2021, vol. 67, no. 1, pp. 689-709, DOI: 10.24425/ace.2021.136497.
  • [16] M.I. Piecyk, A.C. McKinnon, “Forecasting the carbon footprint of road freight transport in 2020”, International Journal of Production Economics, 2010, vol. 128, no. 1, pp. 31-42, DOI: 10.1016/j.ijpe.2009.08.027.
  • [17] R. Roy, G.S. Dangayach, “Measuring productivity and material handling cost reduction”, International Journal of Business and Systems Research, 2015, vol. 9, no. 3, pp. 214-234.
  • [18] Y. Schwartz, R. Raslan, D. Mumovic, “Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study”, Energy, 2016, vol. 97, pp. 58-68, DOI: 10.1016/j.energy.2015.11.056.
  • [19] D. Skorupka, A. Duchaczek, A. Szleszyński, “Optymalizacja doboru środków transportowych w logistyce magazynowej materiałów budowlanych”, Zeszyty Naukowe WSOWL, 2012, no. 4, pp. 137-145.
  • [20] J. Solís-Guzmán, A. Martínez-Rocamora, M. Marrero “Methodology for Determining the Carbon Footprint of the Construction of Residential Buildings”, in Assessment of Carbon Footprint in Different Industrial Sectors, vol. 1, S. Muthu, Ed. Singapore: Springer, 2014, DOI: 10.1007/978-981-4560-41-2_3.
  • [21] A. Tažiková, Z. Struková, “Reducing the carbon footprint by selecting building material”, in 20th International Multidisciplinary Scientific GeoConference SGEM 2020. 2020, pp. 227-234, DOI: 10.5593/sgem2020V/4.2/s06.28.
  • [22] R. Trach, M. Lendo-Siwicka, K. Pawluk, M. Połoński, “Analysis of direct rework costs in Ukrainian construction”, Archives of Civil Engineering, 2021, vol. 67, no. 2, pp. 397-41, DOI: 10.24425/ace.2021.137175.
  • [23] F. Wang, S. Wang, “Applying Logistics to Construction Material Purchasing and Supplier Evaluation”, in 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization. 2010, pp. 90-92, DOI: 10.1109/ICSEM.2010.113.
  • [24] T. Xu, T. Galama, J. Sathaye, “Reducing carbon footprint in cement material making: Characterizing costs of conserved energy and reduced carbon emissions”, Sustainable Cities and Society, 2013, vol. 9, pp. 54-61, DOI: 10.1016/j.scs.2013.03.002.
  • [25] M. Yu, W.G. Peng, D.B. Ge, “Preliminary study on the calculation method of carbon footprint”, Meteorological and Environmental Research, 2011, vol. 2, no. 4, pp. 9-21.
  • [26] K. Zima, “Integrated analysis of costs and amount of greenhouse gases emissions during the building lifecycle”, Archives of Civil Engineering, 2021, vol. 67, no. 2, pp. 413-423, DOI: 10.24425/ace.2021.137176.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-287e0ea0-dc92-4ff1-a5f8-120f2059c808
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.