Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modern and innovative road spreaders are now equipped with a special swiveling mechanism of the spreading disc. It allows for adjusting asymmetrical or a symmetrical spreading pattern and provides for the possibility to maintain the size of the spreading surface and achieve an accurately defined spreading pattern with spreading widths. Thus the paper presents a modelling and control design methodology, and the concept is proposed to design high-performance and optimal drive systems for spreading devices. The paper deals with a nonlinear model of an electric linear actuator and solution of the new intelligent/optimal control problem for the actuator.
Słowa kluczowe
Rocznik
Tom
Strony
1041--1047
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Dobrowolski LLC Company, Obrońców Warszawy 26 A, 67-400 Wschowa, Poland
autor
- Dobrowolski LLC Company, Obrońców Warszawy 26 A, 67-400 Wschowa, Poland
autor
- Czestochowa university of Technology, Institute of Mechanics and Machine Design Foundation, Dąbrowskiego 73, Czestochowa, Poland
autor
- Poznan University of Technology, Institute of Automation and Robotics, Piotrowo 3a, 60-965 Poznan, Poland
Bibliografia
- [1] H.T. Banks, B.M. Lewis, and H.T. Tran, “Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach”, Comput. Optim. Appl 37, 177–218 (2007).
- [2] J.C.A. Barata and M.S. Hussein, The Moore-Penrose Pseudoinverse. A Tutorial Review of the Theory, John Hopkins University Press (2013).
- [3] N. Wang, J. Yu, and W. Lin, Positioning control of linear actuator with nonlinear friction and input saturation using output feedback control, Wiley Periodicals Inc. 21(S2), 191–200 (2016).
- [4] K.K. Varanasi and S. Nayfeh, “The dynamics of leadscrew drivers: low order modeling and experiments”, Transactions of ASME 126, 388–396 (2004).
- [5] S.E. Lyshevski, Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC Press (1999).
- [6] A. Wernli and G. Cook, “Suboptimal control for the nonlinear quadratic regulator problem”, Automatica 11, 75–84 (1975).
- [7] E.B. Erdem and A.G. Alleyne, “Globally stabilizing second-or-der nonlinear systems by SDRE control”, In: Proceedings of the American Control Conference, San Diego, CA. IEEE, Los Alamitos (1999).
- [8] C.P. Mracek and J.R. Cloutier, “Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation meth-od”, Int. J. Robust Nonlinear Control 8 (4–5), 401‒433 (1998).
- [9] T. Cimen and S.P. Banks, “Global optimal feedback control for general nonlinear systems with non-quadratic performance criteria”, Syst. Control Lett 53, 327–346 (2004).
- [10] T. Cimen and S.P. Banks, “Nonlinear optimal tracking control with application to super-tankers for autopilot design”, Automatica 40, 1845–1863 (2004).
- [11] J.D. Pearson, “Approximation methods in optimal control”, Journal of Electronics and Control 13, 453–469 (1962).
- [12] Y.-W. Liang and L.-G. Lin, “Analysis of SDC matrices for successfully implementing the SDRE scheme”, Automatica 49, 3120–3124 (2013).
- [13] A. Bracci, M. Innocenti, and L. Pollini, “Estimation of the region of attraction for state-dependent Riccati equation controllers”, Journal of Guidance, Control and Dynamics 29 (6), 1427–1430 (2006).
- [14] T. Çimen, “Systematic and effective design of nonlinear feed-back controllers via the state-dependent Riccati equation (SDRE) method”, Annual Reviews in Control 34(1), 32–51 (2010).
- [15] E.B. Erdem and A.G. Alleyne, “Design of a class of nonlinear controllers via state dependent Riccati equations”, IEEE Trans-actions on Control Systems Technology 12(1), 133–137 (2004).
- [16] K.D. Hammett, C.D. Hall, and D.B. Ridgely, “Controllability issues in nonlinear state-dependent Riccati equation control”, Journal of Guidance, Control and Dynamics 21 (5), 767–773 (1998).
- [17] Q.M. Lam, M. Xin, and J.R. Cloutier, “SDRE control stability criteria and convergence issues: where are we today addressing practitioners’ concerns?” In AIAA paper, 2012–2475 (2012).
- [18] Y.-W. Liang and L.-G. Lin, “On factorization of the nonlinear drift term for SDRE approach”, In Proc. of the 18th world congress IFAC, Milano, Italy, 9607–9612 (2011).
- [19] J.S. Shamma and J.R. Cloutier, “Existence of SDRE stabilizing feedback”, IEEE Transactions on Automatic Control 48 (3), 513–517 (2003)
- [20] M. Sznaier, J. Cloutier, R. Hull, D. Jacques, and C. Mracek, “Receding horizon control Lyapunov function approach to sub-optimal regulation of nonlinear systems”, Journal of Guidance, Control and Dynamics 23 (3), 399–405 (2000).
- [21] M. Siwczynski and K. Hawron, “Optimum tasks and solutions for energy transmission from the source to the receiver”, Bull. Pol. Ac.: Tech. 66(5), 655–663 (2018).
- [22] www.dobrowolski.com.pl
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-287b8bcd-a6a0-4d00-902b-effd699ccdb4