PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure oxidation of pyrite-arsenopyrite refractory gold concentrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Refractory gold ores have poor gold recoveries with direct cyanide leaching. Typically the refractoriness is due to encapsulation of the gold particles inside the host mineral. To liberate gold for leaching the host mineral must be broken by mechanical or chemical means. The aim of this study was to study the effect of temperature, oxygen partial pressure and slurry density on pressure oxidation of pyrite-arsenopyrite gold concentrate. Batch oxidation tests in an autoclave were done using a factorial design. Different responses were measured and analysed to study effect of the three factors and oxidation kinet-ics. Generally, high slurry density required high temperature and oxygen partial pressure to reach com-plete oxidation. Oxidation kinetics at 225°C temperature, with 1050 kPa oxygen partial pressure and 15% slurry density was found to be fastest resulting in complete conversion of sulfides in 30 minutes. At 195°C, 700 kPa oxygen partial pressure and 10% slurry density, the oxidation kinetics for complete sul-fide conversion was about 60 minutes. Slurry densities above 10% had an adverse effect on the oxidation rate, when the temperature was below 225°C and oxygen partial pressure below 1050 kPa.
Słowa kluczowe
Rocznik
Strony
101--109
Opis fizyczny
Bibliogr. 10 poz., tab., wykr.
Twórcy
autor
  • Aalto University, Department of Materials Science. P.O. Box 16200, Aalto, Espoo, Finland
autor
  • Aalto University, Department of Materials Science. P.O. Box 16200, Aalto, Espoo, Finland,
autor
  • Aalto University, Department of Materials Science. P.O. Box 16200, Aalto, Espoo, Finland
Bibliografia
  • 1. IGLESIAS, N., CARRANZA, F., 1994, Refractory gold-bearing ores: a review of treatment methods and recent advances in biotechnological techniques. Hydrometallurgy 34, 3, 383–395.
  • 2. FLEMING, C.A., 1992, Hydrometallurgy of precious metals recovery. Hydrometallurgy 30, 1–3, 127–162.
  • 3. CORRANS, I.J., ANGOVE, J.E., 1991, Ultra fine milling for the recovery of refractory gold. Minerals Engineering 4. 7–11, 763–776.
  • 4. PANGUM, L.S., BROWNER, R.E., 1996, Pressure chloride leaching of a refractory gold ore. Minerals Engineering 9, 5, 547–556.
  • 5. BAILEY, L.K., PETERS, E., 1976, Decomposition of pyrite in acids by pressure leaching and anodiza-tion: the case for an electrochemical mechanism. Canadian Metallurgical Quarterly 15, 4, 333–344.
  • 6. RIMSTIDT, J.D., VAUGHAN, D.J., 2003, Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta 67, 5, 873–880.
  • 7. PAPANGELAKIS, V.G., DEMOPOULOS, G.P., 1990, Acid Pressure Oxidation of Arsenopyrite: Part I, Reaction Chemistry. Canadian Metallurgical Quarterly 29, 1, 1–12.
  • 8. LONG, H., DIXON, D.G., 2004, Pressure oxidation of pyrite in sulfuric acid media: a kinetic study. Hydrometallurgy 73, 3–4, pp. 335–349.
  • 9. FLEMING, C.A., 2010, Basic iron sulfate – a potential killer in the processing of refractory gold concen-trates by pressure oxidation. Minerals & Metallurgical Processing 27, 2, 81–88.
  • 10. TROMANS, D., 1998, Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects. Hydrometallurgy 50, 3, 279–296.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-287b1c3d-57e2-4ef1-9faf-d99ec6ba63de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.