PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer and pressure drop characteristics of the silicone-based plate heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Rocznik
Strony
127--143
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
  • Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
Bibliografia
  • [1] Muszynski T.: Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems. Appl. Therm. Eng. 115(2017), 782–792. DOI:10.1016/j.applthermaleng.2017.01.021.
  • [2] Kowalczyk C., Rolf R.M., Kowalczyk B., Badyda K.: Mathematical model of combined geat and power plant using GateCycle TM software. J. Power Technol. 95(2015), 183–191.
  • [3] Mikielewicz D., Jakubowska B.: Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels. Arch. Thermodyn. 37(2016), 2, 89–106. DOI:10.1515/aoter-2016-0014.
  • [4] Mikielewicz D., Jakubowska B.: Calculation method for flow boiling and flow condensation of R134a and R1234yf in conventional and small diameter channels. Polish Marit. Res. 24(2017), 141–148. DOI:10.1515/pomr-2017-0032.
  • [5] Cho E.S., Choi J.W., Yoon J.S., Kim M.S.: Experimental study on microchannel heat sinks considering mass flow distribution with non-uniform heat flux conditions. Int. J. Heat Mass Tran. 53(2010), 9, 2159–2168. DOI:10.1016/j.ijheatmasstransfer.2009.12.026.
  • [6] Muszynski T., Mikielewicz D.: Structural optimization of microjet array cooling system. Appl. Therm. Eng. 123 (2017), 103–110. DOI:10.1016/j.applthermaleng.2017.05.082.
  • [7] Muszynski T., Andrzejczyk R.: Heat transfer characteristics of hybrid microjet – microchannel cooling module. Appl. Therm. Eng. 93(2016), 1360–1366. DOI:10.1016/j.applthermaleng.2015.08.085.
  • [8] Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409. DOI:10.1016/j.applthermaleng.2015.08.107.
  • [9] Muszynski T., Andrzejczyk R., Dorao C.A.: Detailed experimental investigations on frictional pressure drop of R134a during flow boiling in 5 mm diameter channel: The influence of acceleration pressure drop component. Int. J. Refrig. 82(2017). DOI:10.1016/j.ijrefrig.2017.05.029.
  • [10] Muszynski T., Andrzejczyk R., Dorao C.A.: Investigations on mixture preparation for two phase adiabatic pressure drop of R134a flowing in 5 mm diameter channel. Arch. Thermodyn. 38(2017), 3, 101–118. DOI:10.1515/aoter-2017-0018.
  • [11] Motyliński K., Kupecki J.: Modeling the dynamic operation of a small fin plate heat exchanger- parametric analysis. Arch. Thermodyn. 36(2015), 3, 85–103. DOI:10.1515/aoter-2015-0023.
  • [12] Taler D., Ocłoń P.: Thermal contact resistance in plate fin-and-tube heat exchangers, determined by experimental data and CFD simulations. Int. J. Therm. Sci. 84(2014), 309–322. DOI:10.1016/j.ijthermalsci.2014.06.001.
  • [13] Zhu Y., Hu Z., Zhou Y., Jiang L., Yu L.: Discussion of the internal heat exchanger’s effect on the organic rankine cycle. Appl. Therm. Eng. 75(2015), 334–343. DOI:10.1016/j.applthermaleng.2014.10.037.
  • [14] Wang Q., Zeng M., Ma T., Du X., Yang J.: Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl. Energy. 135(2014), 748–777.
  • [15] Bustamante J.G., Rattner A.S., Garimella S.: Achieving near-water-cooled power plant performance with air-cooled condensers. Appl. Therm. Eng. 105(2016), 362–371. DOI:10.1016/j.applthermaleng.2015.05.065.
  • [16] Kupecki J., Badyda K.: Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions. Arch. Thermodyn. 34(2013), 4, 3–21. DOI:10.2478/aoter-2013-0026.
  • [17] Muszynski T., Andrzejczyk R.: Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers. Appl. Therm. Eng. 100(2016), 105– 113. DOI:10.1016/j.applthermaleng.2016.01.120
  • [18] Fratczak M., Nowak P., Czeczot J., Metzger M.: Simplified dynamical input– output modeling of plate heat exchangers – case study. Appl. Therm. Eng. 98(2016), 880–893. DOI:10.1016/j.applthermaleng.2016.01.004.
  • [19] Trojanowski R., Butcher T., Worek M., Wei G.: Polymer heat exchanger design for condensing boiler applications. Appl. Therm. Eng. 103(2016), 150–158. DOI:10.1016/j.applthermaleng.2016.03.004.
  • [20] Muszynski T., Koziel S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62. DOI:10.1515/aoter-2016-0019.
  • [21] Andrzejczyk R., Muszynski T.: Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness. Arch. Thermodyn. 37(2016) 4, 137–159. DOI:10.1515/aoter-2016-0032.
  • [22] National Instruments Coorporation LabVIEW User Manual. Ni.com (2013).
  • [23] Taylor B.N., Kuyatt C.E.: Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Tech. Note. 1297(1994), 20. DOI:10.6028/NIST.TN.1900.
  • [24] Jansen H., de Boer M., Legtenberg R., Elwenspoek M.: The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5(1995), 5, 115. DOI:10.1088/0960-1317/5/2/015.
  • [25] Park I.W., Fernandino M., Dorao C.A.: Wetting state transitions over hierarchical conical microstructures. Adv. Mater. Interfaces. 5(2018) 1701039. DOI:10.1002/admi.201701039.
Uwagi
EN
The work was partially funded by the Research Council of Norway under the FRINATEK Project 231529.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28795440-1fec-46db-acc6-eefc24545a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.