PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An integrated approach to estimate storage reliability with masked data from series system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Storage reliability is of importance for the products that largely stay in storage in their total life-cycle such as warning systems for harmful radiation detection, and many kinds of defense systems, etc. Usually, the field-testing data can be available, but the failure causes for a series system cannot be always known because of the masked information. In this paper, the storage reliability model with possibly initial failures is studied on the statistical analysis method when the masked data are considered. To optimize the use of the masked survival data from storage systems, a technique based on the least squares (LS) method with an EM-like algorithm, is proposed for the series system. The parametric estimation procedure based on the LS method is developed by applying the algorithm to update the testing data, and then the LS estimation for the initial reliability and failure rate of the components constituting the series system are investigated. In the case of exponentially distributed storage lifetime, a numerical example is provided to illustrate the method and procedure. The results should be useful for accurately evaluating the production reliability, identifying the production quality, and planning a storage environment.
Rocznik
Strony
art. no. 172922
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
  • Anhui University of Technology, China
autor
  • Faculty of Engineering and Sustainable Development, University of Gävle, Sweden
Bibliografia
  • 1. Cai J, Shi Y M, Liu B. Inference for a series system with dependent masked data under progressive interval censoring. Journalof Applied Statistics 2017; 44 (1): 3-15, https://doi.org/10.1080/02664763.2016.1156658.
  • 2. Cai J, Shi Y M, Yue H B. Accelerated life tests for log-normal series system with dependent masked data under Type-I progressive hybrid censoring. Communications in Statistics –Simulation and Computation 2017; 46(2): 1628-1646, https://doi.org/10.1080/03610918.2015.1045078.
  • 3. Cui L R, Zhao X, Shen J B, Xu Y. An availability model for storage products under periodical inspections. International Journal of Reliability, Quality and Safety Engineering 2010; 17(02): 89–103, https://doi.org/10.1142/S0218539310003688.
  • 4. Dempster A P, Laird N M, Rubin D B. Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistic Society (Series B) 1977; 39(1): 1-38, https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.
  • 5. Fan T H, Chang C C. A Bayesian zero-failure reliability demonstration test of high quality electro-explosive devices. Quality and Reliability Engineering International 2009; 25(8): 913-920, https://doi.org/10.1002/qre.1009.
  • 6. Fink J, Hakim E B, Fowler A, Mccluskey F P, Pecht M G. Reliability assessment of electronic components exposed to long-term non-operating conditions. IEEE transactions on components and packaging technology (part A) 1998; 21(2): 352-359, https://doi.org/10.1109/95.705484.
  • 7. Han M. E-Bayesian estimation of the reliability derived from Binomial distribution. Applied Mathematical Modelling 2011, 35: 2419-2424, https://doi.org/10.1016/j.apm.2010.11.051.
  • 8. Hutto D E, Mazzuchi T, Sarkani S. Analysis of reliability using masked system life data, International Journal of Quality & Reliability Management 2009; 26(7): 723-739, https://doi.org/10.1108/02656710910975787.
  • 9. Ito K, Nakagawa T. Optimal inspection policies for a storage system with degradation at periodic tests. Mathematical and ComputerModelling 2000; 31(10–12): 191–195, https://doi.org/10.1016/S0895-7177(00)00087-X.
  • 10. Jia H P, Peng R, Yang L, Wu T Y, Liu D N, Li Y B. Reliability evaluation of demand-based warm standby systems with capacity storage, Reliability Engineering & System Safety 2022; 218: 108132, https://doi.org/10.1016/j.ress.2021.108132.
  • 11. Kishani M., Tahoori M, Asadi H. Dependability Analysis of Data Storage Systems in Presence of Soft Errors, IEEE Transactions on Reliability 2019; 68(1): 201-215, https://doi.org/10.1109/TR.2018.2888515.
  • 12. Kitagawa T, Yuge T, Yanagi S. Periodic and nonperiodic inspection policies for a one-shot system with minimal repair. Journal of Japan Industrial Management Association 2016; 66(4): 387–95, https://doi.org/10.11221/jima.66.387.
  • 13. Kou G, Yi K X, Xiao H, Peng R. Reliability of a distributed data storage system considering the external impacts, IEEE Transactions on Reliability 2023; 72(1): 3-14, https://doi.org/10.1109/TR.2022.3161638.
  • 14. Levitin G., Xing L D, Dai Y S. Unrepairable system with single production unit and n failure-prone identical parallel storage units, Reliability Engineering & System Safety 2022, 108437, https://doi.org/10.1016/j.ress.2022.108437.
  • 15. Lin D K, Usher J S, Guess F M, Exact maximum likelihood estimation using masked system data. IEEE Transactions on Reliability1993, 42(4): 631-635, https://doi.org/10.1109/24.273596.
  • 16. Lin D K, Usher J S, Guess F M. Bayes estimation of component reliability from masked system-life data. IEEE Transactions on Reliability 1996; 45(2): 233-237, https://doi.org/10.1109/24.510807.
  • 17. Martinez E C. Storage reliability with periodic test. Reliability and Maintainability Symposium, 1984. Proceedings. Annual. IEEE, 1984: 181–185, https://doi.org/10.1109/RAMS.1984.764288.
  • 18. Mense AT, Gullo L, Thomas J, Shedlock P. Models and methods for determining storage reliability. In: Proceedings of the IEEE international reliability physics symposium (IRPS). Anaheim (CA) 2013; p. ER.3.1–ER.3.6, http://doi.org/10.1109/RAMS.2013.6517704.
  • 19. Merren G T. Dormant storage reliability assessments-data based. IEEE Transactions on Components Hybrids and Manufacturing Technology 1981; 4(4): 446-454, http://doi.org/10.1109/TCHMT.1981.1135821.
  • 20. Mirzahosseinian H, Piplani R. A study of repairable parts inventory system operating under performance-based contract. European Journal of Operational Research 2011; 214(2): 256-261, https://doi.org/10.1016/j.ejor.2011.04.035.
  • 21. Misaei H, Mahabadi S E, Haghighi F. Analysis of masked competing risks data with cause and time dependent masking mechanism. Journal of Statistical Computation and Simulation 2020; 90(12): 1-11, https://doi.org/10.1080/00949655.2020.1773465.
  • 22. Nakagawa T, Mizutani S, Chen M. A summary of periodic and random inspection policies. Reliability Engineering & System Safety2010; 95(8): 906–911, https://doi.org/10.1016/j.ress.2010.03.012.
  • 23. Rai H, Panwar M S, Tomer S K. Analysis of masked data with Lindley failure model. Communications in Statistics-Simulation and Computation 2023; 52(4): 1192-1211, https://doi.org/10.1080/03610918.2021.1878371.
  • 24. Sarhan A M. Reliability estimations of components from masked system life data. Reliability Engineering and System Safety 2001; 74(1): 107-113, https://doi.org/10.1016/S0951-8320(01)00072-2.
  • 25. Sarhan A M. The Bayes procedure in exponential reliability family models using conjugate convex tent prior family. Reliability Engineering and System Safety 2001; 71(1): 97-102,https://doi.org/10.1016/S0951-8320(00)00086-7.
  • 26. Sarhan A M, El-Bassiouny A H. Estimation of components reliability in a parallel system using masked system life data. Applied Mathematics & Computation 2003; 138(1): 61-75, https://doi.org/10.1016/S0096-3003(02)00099-1.
  • 27. Su C, Zhang Y J, Cao B X. Forecast model for real time reliability of storage system based on periodic inspection and maintenance data. Eksploatacja i Niezawodność 2012; 14(4): 342-348, https://bwmeta1.element.baztech-article-BAT2-0004-0027.
  • 28. Usher J S. Weibull component reliability-prediction in the presenceof masked data. IEEE Transactions on Reliability 1996; 45(2): 229-232, https://doi.org/10.1109/24.510806.
  • 29. Usher J S, Guess FM. An iterative approach for estimating component reliability from masked system life data. Quality and Reliability Engineering International 1989; 5: 257–261, https://doi.org/10.1002/qre.4680050403.
  • 30. Usher J S, Hodgson T J. Maximum likelihood analysis of component reliability using masked system life data. IEEE Transactions on Reliability 1988; 37: 550–555. https://doi.org/10.1109/24.9880.
  • 31. Wang R, Sha N, Gu B, Xu X. Parameter inference in a hybrid system with masked data. IEEE Transactions on Reliability 2015; 64(2): 636-644, https://doi.org/10.1109/TR.2015.2412537.
  • 32. Yang J F, Chen J, Wang X. EM algorithm for estimating reliability of multi-release open-source soft-ware based on general masked data, IEEE Access, 2021, 9: 18890-18903. https://doi.org/10.1109/ACCESS.2021.3054760.
  • 33. Yang J F, Zhao M, Chen J. ELS algorithm for estimating open-source software reliability with masked data considering both fault detection and correction processes. Communications in Statistics -Theory and Methods 2022; 51(19): 6792-6817, https://doi.org/10.1080/03610926.2020.1866610.
  • 34. Zhang Y J, Sun Y C, Zhao M. A combinatorial estimation approach for storage reliability with initial failures based on periodic testing data. Communications in Statistics –Simulation and Computation 2017; 46(4): 3319-3340, https://doi.org/10.1080/03610918.2015.1130836.
  • 35. Zhang Y J, Zhao M, Zhang S T, Wang J M, Zhang Y J. An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates. Reliability Engineering and System Safety 2017; 159:24-36, https://doi.org/10.1016/j.ress.2016.10.024.
  • 36. Zhao M, Xie M. EM algorithms for estimating software reliability based on masked data. Microelectronics Reliability 1994; 34(6): 1027–1038, https://doi.org/10.1016/0026-2714(94)90067-1.
  • 37. Zhao M, Xie M. A model of storage reliability with possible initial failures. Reliability Engineering & System Safety 1994; 43(3): 269–273, https://doi.org/10.1016/0951-8320(94)90031-0.
  • 38. Zhao M, Xie M. A study of a storage reliability estimation problem. Quality and Reliability Engineering International 1995; 11(2): 123-127. https://doi.org/10.1002/qre.4680110208.
  • 39. Zhao M, Zhang Y J, and Yang J F. Masked data analysis for storage reliability model with initial failures[C]. Safety and Reliability -Safe Societies in a Changing World -Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018: 2565–2572. https://doi.org/10.1201/9781351174664-322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-286a497b-fa7b-44df-99c0-9bd6e1e7a17f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.