PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Evaluation of the Possibility to Use the Water from Quarry Lakes for Irrigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the evaluation of the possibility to use the water from five quarry lakes located in County Strzelin for the purposes of agricultural irrigation. The evaluation was based on the guidelines provided by FAO and in PN-84/C-04635. The average values of water quality indicators were as follows: electrical conductivity – 0.365 mS×cm-1; Sodium Adsorption Ratio – 0.75; Total Dissolved Solids – 233.9 mg×dm-3; water pH – 7.8; BOD5 – 1.6 mgO2×dm-3, while the average ion concentrations were: nitrates – 1.6 mgN-NO3×dm-3; sulphates – 188.5 mg SO4×dm-3; chlorides – 30.95 mg Cl×dm-3; sodium 22.6, mg Na×dm-3; manganese – 0.05 mg Mn×dm-3; and iron – 0.04 mg Fe×dm-3. The values of the analysed indicators were similar to the concentrations noted in natural lakes and unloaded water reservoirs. The water from the analysed quarry lakes met (with some minor limitations) the requirements that enable its use for agricultural irrigation, in particular sprinkler irrigation.
Słowa kluczowe
Rocznik
Strony
188--201
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Institute of Landscape Architecture, ul. Grunwaldzka 55, 50-357 Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences Institute of Environmental Protection and Development, pl. Grunwaldzki 24, 50-363 Wrocław, Poland
autor
  • Hunan Agricultural University in Changsha, Horticulture & Landscape College, No.1 Nongda Road, Furong District, Changsha City, Hunan Province, P.R. China 410128
Bibliografia
  • 1. Avila-Pérez P., Balcázar M., Zarazúa-Ortega G., Barceló-Quintal I., Dı́az-Delgado C. 1999. Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Science of the Total Environment, 234 (1–3), 185–196.
  • 2. Axler R., Yokom S., Tikkanen C., McDonald M., Runke H., Wilcox D., Cady B. 1998. Restoration of a Mine Pit Lake from Aquacultural Nutrient Enrichment. Restoration Ecology, 6(1), 1–19. DOI: 10.1046/j.1526–100x.1998.00612.x.
  • 3. Ayers R.S. and Westcott D.W. 1985. Water quality for agriculture, FAO irrigation and drainage paper 29. Rev. 1. Food and Agriculture Organization of the United Nations, Rome.
  • 4. Bauder, J. W., Bauder, T. A., Waskom, R. M., Scherer, T. F. 2010. Assessing the suitability of water (quality) for irrigation – salinity and sodium. Retrieved from Northern Plains and Mountains Regional Water Program. http://region8water.colostate.edu/PDFs/Assessing%20the%20Suitablity%20of%20Water%20Quality%20for%20Irrigation.pdf (access of the 2019–07–18).
  • 5. Brysiewicz A., Wesołowski P., Rawicki K. 2013. Porównanie stężenia składników chemicznych w wodzie ze śródpolnego oczka wodnego oraz w wodzie gruntowej z przylegających terenów rolniczych. Woda-Środowisko-Obszary Wiejskie, 13, 2(42), 17–31.
  • 6. Castendyk D.N., Mauk J.L., Webster J.G. 2005. A mineral quantification method for wall rocks at open pit mines, and application to the Martha Au–Ag mine, Waihi, New Zealand. Applied Geochemistry, 20, 135–156.
  • 7. Chudzik W. 2012. The process of mined land reclamation in natural aggregate quarries exemplified by the sand and gravel quarry Dębina Łętowska. AGH Journal of Mining and Geoengineering, 36(1), 89–96.
  • 8. Czerniawska-Kusza I., Brożonowicz A. 2014. Zoobenthos in post-exploitation reservoirs of marls and limestone in Opole Silesia. Polish Journal of Natural Sciences, 29(4), 307–318.
  • 9. De Luca D.A,, Castagna S., Lasagna M. 2013. Hydrogeological features conditioning trophic levels of quarry lakes in western Po plain (northwestern Italy), Geophysical Research Abstracts, 15, GU2013–8085.
  • 10. Denimal S., Bertrand C., Mudry J., Paquette Y., Hochart M., Steinmann M. 2005. Evolution of the aqueous geochemistry of mine pit lakes–Blanzy–Montceau-les-Mines coal basin (Massif Central, France): origin of sulfate contents, effects of stratification on water quality. Applied Geochemistry, 20, 825–839.
  • 11. Domashenko Y., and Vasilyev, S. 2018. Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land. Journal of Ecological Engineering, 19(1), 48–54. https://doi.org/10.12911/22998993/79567.
  • 12. Doupé R.G., Lymbery A.J. 2005. Environmental risks associated with beneficial end uses of mine lakes in Southwestern Australia. Mine Water and the Environment, 24(3), 134–138.
  • 13. Doyle, G.A., Runnells D.D. 1997. Physical limnology of existing mine pit lakes. Mining Engineering, 49, 76–80.
  • 14. EEA Report No 2/2009. Water resources across Europe – confronting water scarcity and drought. Luxembourg: Office for Official Publications of the European Communities, 2009. DOI 10.2800/16803.
  • 15. Elzwayie A., Afan, H.A., Allawi, M.F., El-Shafie A. 2017. Heavy metal monitoring, analysis and prediction in lakes and rivers: state of the art. Environ Sci Pollut Res, 24.12104–12117. DOI 10.1007/s11356–017–8715–0.
  • 16. Fiszer M., Michałkiewicz M. 1998. Ocena stanu zanieczyszczenia Jeziora Lednica na podstawie badań fizyko-chemicznych epilimnionu, hypolimnionu. Studia Lednickie 5, 269–282.
  • 17. Galas J. 2003. Limnological Study on a Lake Formed in a Limestone Quarry (Kraków, Poland). I. Water Chemistry. Polish Journal of Environmental Studies, 12(3), 297–300.
  • 18. Grünewald U. 2001. Water resources management in river catchments influenced by lignite mining. Ecological Engineering, 17.143–152.
  • 19. GUS 2015: Ochrona Środowiska 2015, Warszawa 2015.
  • 20. Gwoździński K., Mazur J., Pieniążek A. 2014. Concentrations of metals in water of unmonitored lakes near a landscape park. Pol. J. Environ. Stud. 23(4), 1317–1321.
  • 21. Hinwood A.L., Heyworth J., Tanner H., McCullough C. 2012. Recreational use of acidic pit lakes-human health considerations for post closure planning. Journal of Water Resource and Protection, 2012, 4, 1061–1070.
  • 22. Hobot A. (Ed.) 2014. Aktualizacja wykazu JCWP, SCWP dla potrzeb kolejnej aktualizacji planów w latach 2015–2021 wraz z weryfikacją typów wód części wód – ETAP, – Metodyka. KZGW, Gliwice-Warszwa.
  • 23. Jawecki B. 2017. Rola kamieniołomów w kształtowaniu krajobrazu na przykładzie ziemi strzelińskiej. Monografia. Uniwersytet Przyrodniczywe Wrocławiu
  • 24. Jawecki B., Dąbek P.B., Pawęska K., Wei X. 2018. Estimating Water Retention in Post-mining Excavations Using LiDAR ALS Data for the Strzelin Quarry, in Lower Silesia. Mine Water and the Environment, (Online) https://doi.org/10.1007/s10230–018–0526–0.
  • 25. Jawecki B., Mirski J. 2018. Wstępna ocena zawartości biogenów w wodach zalanych nieczynnych kamieniołomów położonych na terenach wiejskich (Preliminary evaluation of nutrients concentration in quarry lakes located on the rural areas). Inżynieria Ekologiczna, (Ecological Engineering) 19(6), 1–13, https://doi.org/10.12912/23920629/94957.
  • 26. Kajak Z. 2001. Hydrobiologia-limnologia. Ekosystemy wód śródlądowych.: Wydawnictwo Naukowe PWN. Warszawa.
  • 27. Karadede H., Ünlü E. 2000. Concentrations of some heavy metals in water, sediment and species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41.1371–1376.
  • 28. Klapper H., Geller W. 2001. Water quality management of mining lakes – a new field of applied hydrobiology. Acta hydrochim. hydrobiol. 29 (6–7), 363–374.
  • 29. Kleeberg A., Grüneberg B. 2005. Phosphorus mobility in sediments of acid mining lakes, Lusatia, Germany. Ecological Engineering, 24, 89–100.
  • 30. Kołodziejczyk U. 2009. Hydrological, geological and geochemical conditions determining reclamation of post – mine land in the region of Łęknica. Gospodarka Surowcami Mineralnymi, Tom 25, Zeszyt 3. 2009, 190–201.
  • 31. Kumar N.R., McCullough C.D. Lund M.A., Larranaga S.A. 2016. Assessment of factors limiting algal growth in acidic pit lakes – a case study from Western Australia, Australia. Environmental Science and Pollution Research, 23, 5915–5924. DOI 10.1007/s11356–015–5829–0.
  • 32. Kumar R. N., McCullough C. D., Lund M. A. 2009. Water Resources in Australian Mine Pit Lakes. Mining Technology, 118(3–4), 204–211. DOI:10.1179/174328610X12682159815028.
  • 33. Lykhovyd, P.V., Lavrenko, S., Lavrenko, N., Dementiieva, O. 2019. Agro-environmental evaluation of irrigation water from different sources, together with drainage and escape water of rice irrigation systems, according to its impact on maize. Journal of Ecological Engineering, 20(2), 1–7. https://doi.org/10.12911/22998993/94916.
  • 34. Łabędzki L. 2016. Actions and measures for mitigation drought and water scarcity in agriculture. Journal of Water and Land Development, 29(IV–VI), 3–10. DOI: 10.1515/jwld-2016–0007.
  • 35. Mayne C.D. 1994. The Limnology of Three Limestone Rock Quarries in East-Central Nebraska and Western Iowa. Transactions of the Nebraska Academy of Sciences, 21, 1–7.
  • 36. McCullough C.D. 2008. Approaches to remediation of acid mine drainage water in pit lakes. International Journal of Mining, Reclamation and Environment, 22(2), 105–119.
  • 37. McCullough C.D., Lund M.A. 2006. Opportunities for sustainable mining pit lakes in Australia. Mine Water and the Environment, 25, 220–226.
  • 38. Migaszewski Z.M., Gałuszka A., Dołęgowska S. 2016. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland. Environ Sci Pollut Res, 23, 24943–24959, DOI 10.1007/s11356–016–7713-y.
  • 39. Molenda T. 2006. Górnicze środowiska akwatyczne – obiekty obserwacji procesów hydrologicznobiologicznych. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 117(32), 239–250.
  • 40. Nixdorf B., Lessmann D., Deneke R. 2005. Mining lakes in a disturbed landscape: Application of the EC Water Framework Directive and future management strategies. Ecological Engineering, 24, 67–73.
  • 41. Orzepowski W., Pulikowski K. 2008. Magnesium, calcium, potassium and sodium content in groundwater and surface water in arable lands in the commune of Kąty Wrocławskie. J. Elementol., 13(4), 605–614.
  • 42. Patro M., Zubala T. 2012. Possibilities of shaping the water retention in agricultural landscape. Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN, 9, 143–152.
  • 43. PN-84/C-04635. Woda do nawadniania roślin na użytkach rolnych oraz do ich opryskiwania chemicznymi środkami ochrony roślin.
  • 44. Potasznik A., Szymczyk S. 2015. Magnesium and calcium concentrations in the surface water and bottom deposits of a river-lake system. J. Elem., 20(3), 677–692. DOI: 10.5601/jelem.2015.20.1.788.
  • 45. Przybyła C., Zbierska Z., Dwornikowska Ż. 2011. Ocena zmian jakości wody w wybranych jeziorach Pojezierza Poznańskiego w latach 2004÷2009. Rocznik Ochrona Środowiska, 13, 723–746.
  • 46. Puczyńska I., Skrzypski J. 2009. Integracja działań biologicznych, technicznych jako podstawa intensyfikacji procesów samooczyszczania się zbiorników zaporowych (na przykładzie Zbiornika Sulejowskiego). Ecological Chemistry and Engineering S, 16(S2), 221–235.
  • 47. Ramstedt M., Carlsson E., Lövgren L. 2003. Aqueous geochemistry in the Udden pit lake, northern Sweden. Applied Geochemistry, 18, 97–108.
  • 48. Rauba M, Dembowska D. 2018. Ocena stężeń związków azotu, fosforu w wodach środkowego basenu rzeki Biebrza, Inżynieria Ekologiczna, 19(3), 62–68. https://doi.org/10.12912/23920629/86054.
  • 49. Ravazzani, G., Giudici, I., Schmidt, C., and Mancini, M. 2011. Evaluating the Potential of Quarry Lakes for Supplemental Irrigation. Journal of Irrigation and Drainage Engineering 137(80), 564–571. DOI. 10.1061/(ASCE)IR.1943–4774.0000321.
  • 50. Ravikumar P., Aneesul Mehmood M., Somashekar R.K. 2013. Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Appl Water Sci 3:247–261, DOI 10.1007/s13201–013–0077–2.
  • 51. Saha U., ButcherS., Porter W., Sonon L., Hawkins G., Lessl J. 2015. Irrigation Water Quality for Agriculture. UGA Extension Bulletin 1448.
  • 52. Schultze M., Pokrandt K-H., Hille W. 2010. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica, 40(2), 148–155. http://dx.doi.org/10.1016/j.limno.2009.11.006.
  • 53. Siemieniuk A. Szczykowska J., Wiater J. 2013. Sezonowe zmiany stanu troficznego zbiorników retencyjnych. Ekonomia, Środowisko, 2(45).107–116.
  • 54. Singleton V.L., Jacob B., Feeney M.T. Little J.C. 2013. Modeling a proposed quarry reservoir for raw water storage in Atlanta, Georgia. Journal of Environmental Engineering, 139(1), 70–78. DOI: 10.1061/(ASCE)EE.1943–7870.0000582.
  • 55. Stottmeister U., Glässer W., Klapper H., Weißbrodt E., Eccarius B., Kennedy C., Schultze M., Wendt-Potthoff K., Frömmichen R., Schreck P., Strauch G. 1999. Strategies for Remediation of Former Opencast Mining Areas in Eastern Germany. In: Azcue J.M. (eds) Environmental Impacts of Mining Activities. Environmental Science. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978–3-642–59891–3_16.
  • 56. Tarjuelo J.M., De-Juan J.A., Moreno M.A., Ortega J.F. 2010. Review. Water resources deficit andwater engineering. Span J Agric Res, 8, 102–121.
  • 57. Kaniszewski S., Treder W. 2018. Jakość wody do nawadniania, fertygacji, metody uzdatniania. [In] Walczak, J. (Ed.) Ograniczenie zanieczyszczenia azotem pochodzenia rolniczego metodą poprawy jakości wód. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, Warszawa 2018.
  • 58. Walczykiewicz T. 2014. Scenarios of water resources development in Poland up to 2030. Water Resources, 41(6), 763–773. DOI: 10.1134/ S0097807814060219.
  • 59. Wiatkowski M., Rosik-Dulewska C., Kuczewski K., Kasperek R. 2013. Ocena jakości wody zbiornika Włodzienin w pierwszym roku funkcjonowania. Rocznik Ochrona Środowiska, 15, 2667–2682.
  • 60. Wiejaczka Ł. 2011. Wpływ zbiornika Klimkówka na abiotyczne elementy środowiska przyrodniczego w wolnie Ropy. Prace geograficzne 229, IGiPZ PAN, Warszawa.
  • 61. Wojtkowska M. 2014. Metale ciężkie w wodzie, osadach, roślinach Jeziora Zegrzyńskiego (Heavy metals in water, sediments and plants of the Zegrzyński Lake). Progress in Plant Protection, 54 (1), 5–101. DOI: http://dx.doi.org/10.14199/ppp-2014–017.
  • 62. Tokarczyk-Dorociak K., Lorenc M.W., Jawecki B. Zych-Głuszyńska K. 2015. Post-industrial landscape transformationand its application for geotourism, education and recreation – an example of the Wide Mt. near Strzegom, Lower Silesia/ Poland. Z. Dt. Ges. Geowiss, 166 (2).195–203.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28696ac4-8426-4988-a28f-9ae717eaeddb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.