PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ionospheric anomalies related to the Mw 6.5 Samar, Philippines earthquake

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Models belonging to the ionosphere that is directly affected by factors such as solar activity, geomagnetic storm, earthquake, seasonal changes, and geographical location need to be considered altogether. In this sense, the cause of the ionospheric anomalies should be meticulously distinguished from each other. Ionospheric anomalies that occur before or (and) after an earthquake have a serious place in earthquake prediction studies. Total electron content (TEC) is one of the significant parameters to be able to discuss the anomalies of the ionosphere. This essay investigates ionospheric anomalies before and after the Mw 6.5 Samar, Philippines (12.025° N, 125.416° E and November 18, 2003, at 17:14 UT) earthquake. The paper analyzes anomalies with the aid of the TEC (TECU) map. In the paper, the time-domain TEC variables are transferred to the frequency-domain for observing some clues-peaks by short-term Fourier transformation spectral analysis. The discussion handles the effect of the solar activity with the F10.7 (sfu) index and the effect of geomagnetic storms with Bz (nT), v (km/s), P (nPa), E (mV/m), Kp (nT), and Dst (nT) parameters (index). The lower and upper boundaries of the TEC map obtained from the International Reference Ionosphere (IRI-2016) are calculated with the help of median and standard deviation. The boundary-setting process is named statistical analysis. TEC data exceeding the boundaries are marked as anomaly data. According to the paper, 11-day anomalies (9-day of which belong to pre-earthquake) are detected. Probably, the anomalies observed on November 6, 7, and 12 belong to the Samar earthquake.
Czasopismo
Rocznik
Strony
601--611
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
autor
  • Department of Mathematics, Kirklareli University, 39100 Kirklareli, Turkey
Bibliografia
  • 1. Adekoya BJ, Adebesin BO (2015) Ionospheric and solar wind variation during magnetic storm onset and main phase at low- and mid-latitudes. Acta Geophys 63:1150–1180. https://doi.org/10.1515/acgeo-2015-0020
  • 2. Aframovich EL, Astafieva EI, Gokhberg MB, Lapshin VM, Permyakova VE, Steblov GM, Shalimov SL (2004) Variations of the total electron content in the ionosphere from GPS data recorded during the hector mine earthquake of October 16, 1999. Calif Rus J Earth Sci 6(5):339–354. https://doi.org/10.2205/2004ES000155
  • 3. Anonymous: https://www.volcanodiscovery.com/home.html
  • 4. Anonymous: https://earthquake.usgs.gov/earthquakes/eventpage/usp000cdb4/shakemap/intensity
  • 5. Ansari K, Corumluoglu O, Panda SK (2017) Analysis of ionospheric TEC from GNSS observables over the Turkish region and predictability of IRI and SPIM models. Astrophys Space Sci 362:65. https://doi.org/10.1007/s10509-017-3043-x
  • 6. Ansari K, Corumluoglu O, Verma P (2018) The triangulated affine transformation parameters and barycentric coordinates of Turkish permanent GPS network. Surv Rev 50(362):412–415. https://doi.org/10.1080/00396265.2017.1297016
  • 7. Bagiya MS, Joshi HP, Iyer KN, Aggarwal M, Ravindran S, Pathan BM (2009) TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann Geophys 27:1047–1057. https://doi.org/10.5194/angeo-27-1047-2009
  • 8. Basciftci F (2021) An analysis of the latest super geomagnetic storm of the 23RD solar cycle (May 15, 2005, Dst: –247 nT). Geomagn Aeron 61:S156–S166. https://doi.org/10.1134/S0016793222010029
  • 9. Basciftci F (2022) Investigating and comparing the two superstorms in the 23rd solar cycle. Indian J Phys 96(10):2707–2716. https://doi.org/10.1007/s12648-022-02396-y
  • 10. Basciftci F, Inal C, Yildirim O, Bulbul S (2018) Comparison of regional and global TEC values: Turkey model. Int J Eng Geosci 3(2):61–72. https://doi.org/10.26833/ijeg.382604
  • 11. Basciftci F, Bulbul S (2022) Investigation of ionospheric TEC changes potentially related to Seferihisar–Izmir earthquake (30 October 2020, MW 6.6). Bull Geophys Oceanogr 63(3):403–426. https://doi.org/10.4430/bgo00394
  • 12. Basu S, Basu Su, Rich FJ, Groves KM, MacKenzie E, Coker C, Sahai Y, Fagundes PR, Becker-Guedes F (2007) Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. J Geophys Res 112:A08308. https://doi.org/10.1029/2006JA012192
  • 13. Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2):261–275. https://doi.org/10.1029/2000RS002432
  • 14. Bulbul S, Basciftci F (2021) TEC anomalies observed before and after Sivrice-Elaziğ earthquake (24 January 2020, Mw: 6.8). Arab J Geosci 14:1077. https://doi.org/10.1007/s12517-021-07426-3
  • 15. Chukwuma VU, Adekoya BJ, Thomas JE et al (2021) On the significance of requisite criteria in detecting pre-earthquake ionospheric precursors: a case study of the Tohoku earthquake of March 11, 2011. Acta Geophys 69:1545–1566. https://doi.org/10.1007/s11600-021-00627-0
  • 16. Dautermann T, Calais E, Lognonné P, Mattioli GS (2009) Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the soufriere hills volcano, montserrat. Geophys J Int 179:1537–1546
  • 17. Davies K, Baker DM (1965) Ionospheric effects observed around time of Alaskan earthquake of March 28 1964. J Geophys Res 70:2251–2253
  • 18. Debnath L, Bahatta D (2007) Integral transforms and their applications, 2nd edn, Taylor and Francis LLC
  • 19. Eroglu E (2018) Mathematical modeling of the moderate storm on 28 February 2008. New Astron 60:33–41. https://doi.org/10.1016/j.newast.2017.10.002
  • 20. Eroglu E (2022) Discussing total electron content over the solar wind parameters. Math Probl Eng. https://doi.org/10.1155/2022/9592008
  • 21. Freund FT (2011) Pre-earthquake signals: underlying physical processes. J Asian Earth Sci 41:383–400
  • 22. Freund FT, Takeuchi A, Lau BW (2006) Electric currents streaming out of stressed igneous rocks–a step towards understanding pre-earthquake low frequency EM emissions. Phys Chem Earth 31:389–396
  • 23. Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Sol Terr Phy 71:1824–1834
  • 24. Fuying Z, Yun W, Ningbo F (2011) Application of kalman filter in detecting pre-earthquake ionospheric TEC anomaly. Geodesy Geodyn 2:43–47
  • 25. Gonzales CA, Kelley MC, Behnke RA, Vickrey JF, Wand R, Holt J (1983) On the latitudinal variations of the ionospheric electric field during magnetospheric disturbances. J Geophys Res Space Phys 88(A11):9135–9144. https://doi.org/10.1029/JA088iA11p09135
  • 26. Habarulema JB, McKinnell LA, Opperman BDL (2009) A recurrent neural network approach to quantitatively studying solar wind effects on TEC derived from GPS; preliminary results. Ann Geophys 27:2111–2125
  • 27. Inyurt S, Razin MRG (2021) Regional application of ANFIS in ionosphere time series prediction at severe solar activity period. Acta Astronaut 179:450–461. https://doi.org/10.1016/j.actaastro.2020.11.027
  • 28. Inyurt S, Yildirim O, Mekik C (2017) Comparison between IRI-2012 and GPS-TEC observations over the western black sea. Ann Geophys 35(4):817–824
  • 29. Ke F, Wang J, Tu M, Wang X, Wang X, Zhao X, Deng J (2018) Enhancing reliability of seismo-ionospheric anomaly detection with the linear correlation between total electron content and the solar activity index F10.7: Nepal earthquake 2015. J Geodyn 121:88–95
  • 30. Kim VP, Liu JY, Hegal VV (2012) Modeling the pre-earthquake electrostatic effect on the F region ionosphere. Adv Space Res 50:1524–1533. https://doi.org/10.1016/j.asr.2012.07.023
  • 31. Klotz S, Johnson NL (1983) Encyclopedia of statistical sciences. Wiley, New York
  • 32. Koklu K (2021) Mathematical analysis of the 08 May 2014 weak storm. Math Probl Eng. https://doi.org/10.1155/2021/9948745
  • 33. Koklu K (2022) Using artificial neural networks for comparison of the 09 March 2012 intense and 08 May 2014 weak storms. Adv Space Res. https://doi.org/10.1016/j.asr.2022.07.067
  • 34. Leonard RS, Barnes RA (1965) Observation of ionospheric disturbances following Alaska earthquake. J Geophys Res 70:1250–1253
  • 35. Lin CC, Shen MH, Chou MY, Chen CH, Yue J, Chen PC, Matsumura M (2017) Concentric traveling ionospheric disturbances triggered by the launch of a spacex falcon 9 rocket. Geophys Res Lett 44:7578–7586
  • 36. Liperovsky VA, Pokhotelov OA, Liperovskaya EV, Parrot M, Meister CV, Alimov OA (2000) Modification of sporadic E-layers caused by seismic activity. Surv Geophys 21:449–486. https://doi.org/10.1023/A:1006711603561
  • 37. Liu JY, Chuo YJ, Shan SJ, Tsaı YB, Chen YI, Pulınets SA, Yu SB (2004) Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann Geophys 22(5):1585–1593. https://doi.org/10.5194/angeo-22-1585-2004
  • 38. Liu JY, Chen YI, Chen CH, Hattori K (2010) Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 december 2004 M9.3 Sumatra-Andaman earthquake. J Geophys Res 115:A09312. https://doi.org/10.1029/2010JA015313
  • 39. Lu G, Goncharenko L, Nicolls MJ, Maute A, Coster A, Paxton LJ (2012) Ionospheric and thermospheric variations associated with prompt penetration electric fields. J Geophys Res 117:A08312. https://doi.org/10.1029/2012JA017769
  • 40. Mannucci AJ, Tsurutani BT, Kelley MC, Iijima BA, Komjathy A (2009) Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. J Geophys Res 114:A10308. https://doi.org/10.1029/2009JA014043
  • 41. Manoj C, Maus S (2012) A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather 10:1–9
  • 42. Manoj C, Maus S, Lühr H, Alken P (2008) Penetration characteristics of the interplanetary electric field to the daytime equatorial ionosphere. J Geophys Res 113:A12310. https://doi.org/10.1029/2008JA013381
  • 43. Melgarejo-Morales A, Vazquez-Becerra GE, Millan-Almaraz JR et al (2020) Examination of seismo-ionospheric anomalies before earthquakes of Mw ≥ 5.1 for the period 2008–2015 in Oaxaca, Mexico Using GPS-TEC. Acta Geophys 68:1229–1244. https://doi.org/10.1007/s11600-020-00470-9
  • 44. Pulinets SA, Ouzounov D, Karelin AV, Boyarchuk KA, Pokhmelnykh LA (2006) The physical nature of thermal anomalies observed before strong earthquakes. Phys Chem Earth 31:43–153
  • 45. Saqib M, Şentürk E, Sahu SA et al (2021) Ionospheric anomalies detection using autoregressive integrated moving average (ARIMA) model as an earthquake precursor. Acta Geophys 69:1493–1507. https://doi.org/10.1007/s11600-021-00616-3
  • 46. Schaer S, Gurtner W, Feltens J (1998) IONEX: The ionosphere map exchange format version 1. In: Proceedings of the 1998 IGS analysis centers workshop, ESOC. Darmstadt, Germany. pp 233–247
  • 47. Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system, Ph.D Thesis, Universitat Bern, Switzerland
  • 48. Senturk E, Cepni MSA (2018) Statistical analysis of seismo-ionospheric TEC anomalies before 63 Mw ≥ 5.0 earthquakes in Turkey during 2003–2016. Acta Geophys 66:1495–1507. https://doi.org/10.1007/s11600-018-0214-2
  • 49. Senturk E, Livaoglu H, Cepni MS (2019) A comprehensive analysis of ionospheric anomalies before the Mw7.1 van earthquake on 23 October 2011. J Navigation 72:702–720
  • 50. Senturk E, Inyurt S, Sertcelik I (2020) Ionospheric anomalies associated with the Mw 7.3 Iran-Iraq border earthquake and a moderate magnetic storm. Ann Geophys 38:1031–1043. https://doi.org/10.5194/angeo-38-1031-2020
  • 51. Tariq MA, Shah M, Hernández-Pajares M, Iqbal T (2019) Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv Space Res 63(7):2088–2099. https://doi.org/10.1016/j.asr.2018.12.028
  • 52. Themens DR, Jayachandran PT (2016) Solar activity variability in the IRI at high latitudes: comparisons with GPS total electron content. J Geophys Res Space Phys 121(4):793–3807
  • 53. Toutain JP, Baubron JC (1998) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27
  • 54. Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Saito A, Araki T, Yumoto K, Tsuda T, Abdu MA, Sobral JHA, Gonzalez WD, McCreadie H, Lakhina GS, Vasyliūnas VM (2008) Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J Geophys Res 113:A05311. https://doi.org/10.1029/2007JA012879
  • 55. Ulukavak M (2021) Deep learning for ionospheric TEC forecasting at mid-latitude stations in Turkey. Acta Geophys 69:589–606. https://doi.org/10.1007/s11600-021-00568-8
  • 56. Ulukavak M, Yalcinkaya M (2017) Precursor analysis of ionospheric GPS-TEC variations before the 2010 M7.2 Baja California earthquake. Geomat Nat Haz Risk 8(2):295–308. https://doi.org/10.1080/19475705.2016.1208684
  • 57. Vaishnav R, Jacobi C, Berdermann J (2019) Long-term trends in the ionospheric response to solar extreme-ultraviolet variations. Ann Geophys 37:1141–1159. https://doi.org/10.5194/angeo-37-1141-2019
  • 58. Yildirim O, Inyurt S, Mekik C (2016) Review of variations in Mw<7 earthquake motions on position and TEC (Mw=6.5 Aegean Sea earthquake sample). Nat Hazards Earth Syst Sci 16:543–557. https://doi.org/10.5194/nhess-16-543-2016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2861fc05-8a3b-43ab-bef3-5056893c3f1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.