PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microhardness analysis of halite from different salt-bearing formations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microhardness tests were carried out on single halite crystals. They were conducted on the (001) surface, with the indenter set in two directions: parallel to the halite face (010); and parallel to the (110) face. The halite crystals represent salt formations of different ages (Devonian, Zechstein, Badenian), depths (from 1835.5 to 195 m) and intensities of tectonic disturbance (horizontally stratified, salt dome, strongly folded). The measurement results revealed specific features of the halite crystals analysed. Firstly, the data obtained show microhardness anisotropy in halite crystals. Moreover, microhardness correlates with the depth of the salt-bearing formations. Halite crystals from deeper levels showed higher microhardness, though there was no correlation between the intensity of tectonic deformation and the average Vickers hardness (HV). The samples analysed show a variability of HV values and and of the shapes of imprints. These indicate zones where halite crystals are deformed at the atomic level and reflects the presence of defects in the crystal lattice. Such deformation is reflected in an irregularity of the strike of cleavage planes. Consequently, the analysis of imprint shapes is a useful method for the examination of ductile minerals and materials.
Rocznik
Strony
771--785
Opis fizyczny
Bibliogr. 76 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Aptukov, V.N., Konstantinova, S.A., Skachkov, A.P., 2010. Micromechanical characteristics of karnalite, silvinite and rock salt at upper Kama deposit. Journal of Mining Science, 46: 352-358.
  • 2. Atkinson, C., Martínez-Esnaola, J.M., Elizalde, M.R., 2013. Contact mechanics: a review and some applications. Materials Science and Technology, 28: 1079-1091.
  • 3. Banaszak, A., Garlicki, A., Markiewicz, A., 2007. Geology of the Oldest Rock Salt Kazimierzów in Sieroszowice I area (Polkowice-Sieroszowice Mine) (in Polish with English abstract). Przegląd Solny, Gospodarka Surowcami Mineralnymi PAN, 23, Spec. Issue, 1: 9-20.
  • 4. Brookes, C.A., Burnard, R.P., Morgan, A., 1975. Anisotropy and indentation creep in crystals with the rock salt structure. Journal of Materials Science, Letters, 10: 2171-2173.
  • 5. Buerger, M.J., 1930a. Translation-gliding in crystals. American Mineralogist, 15: 45-64.
  • 6. Buerger, M.J., 1930b. Translation-glidíng in crystals of the NaCl structural type. American Mineralogist, 15: 174-187.
  • 7. Buerger M.J., 1930c. Translation-gliding in crystals of the NaCl type (concluded). American Mineralogist, 15: 226-238.
  • 8. Burliga, S., 2007. Internal structure of subhorizontal bedded rock salt formation in the area of Sieroszowice, SW Poland - meso- and microstructural indication. Przegląd Solny, Gospodarka Surowcami Mineralnymi PAN, 23: 51-64.
  • 9. Burliga, S., Kolonko, P., Misiek, G., Czapowski, G., 1995. Kłodawa salt mine. In: Upper Rotliegend - Zechstein: Terrestrial - Marine Sedimentary Succession in Polish Permian Basin (ed. J. Małecka): 45-54. XIII International Congress on Carboniferous-Permian, August 28 - September 2, 1995, Guide to Excursion A3, Kraków, Poland.
  • 10. Carter, N.L., Hansen, F.D., 1983. Creep of rock salt. Tectonophysics, 92: 275-333.
  • 11. Carter, N.L., Heard, H.L., 1970. Temperature and rate dependent deformation of halite. American Journal of Science, 269: 193-249.
  • 12. Carter, N.L., Horseman, S.T., Russel, J.E., Handin, J.,1993. Rheology of rock salt. Journal of Structural Geology, 15: 1257-1271.
  • 13. Charysz, W., 1973. Zechstein stage of Younger Salts (Z3) in Kujawy region (in Polish with English summary). Prace Geologiczne, 75: 1-68.
  • 14. Christy, R.W., 1956. Creep of sodium chloride and sodium bromide at high temperature. Acta Metallurgica, 4: 441-443.
  • 15. Craig, J.R., Vaughan, D.J., 1994. Ore microscopy and ore petrography. John Wiley and Sons. Inc, Second Edition.
  • 16. Cyran, K., Toboła, T., 2006. Study of tectonic mesostructures in the Bochnia salt mine, South Poland (in Polish with English summary). Kwartalnik AGH Geologia, 32: 85-98.
  • 17. Cyran, K., Toboła, T., 2007. The role of tectonics study for conservation and future development of miocene salt deposits (in Polish with English summary). Gospodarka Surowcami Mineralnymi PAN, 23: 143-156.
  • 18. Cyran, K., Toboła, T., Kamiński, P., 2016. Effect of petrological features on mechanical properties of rock salt from the LGOM (Legnica-Głogów Copper District) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 466: 51-64.
  • 19. Davidge, R.W., Pratt, P.L., 1964. Plastic deformation and work-hardening in NaCl. Physica Status Solidi (b), 6: 759-776.
  • 20. Desbois, G., Urai, J.L., De Bresser, J.H.P., 2012. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low differential stress (Qom Kuh salt fountain, central Iran): implications for rheology and transport properties. Journal of Structural Geology, 43: 128-143.
  • 21. Drury, M., Urai, J., 1990. Deformation-related recrystallization processes. Tectonophysics, 172: 235-253.
  • 22. Fossum, A.F., Brodsky, N.S., Chan, K.S., 1993. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30: 1341-1344.
  • 23. Garlicki, A., 1979. Sedimentation of Miocene Salts in Poland (in Polish with English summary). Prace Geologiczne, 119.
  • 24. Giannakopoulos, A.E., Suresh, S., 1999. Determination of elastoplastic properties by instrumented sharp indentation. Scripta Materialia, 40:1191-1198.
  • 25. Grobe, M., 2000. Distribution and Thickness of Salt Within the Devonian Elk Point Group, Western Canada Sedimentary Basin. Alberta Energy and Utilities Board, Alberta Geological Survey, Earth Sciences Report 2000-02.
  • 26. Guillope, M., Poirier, J.P., 1979. Dynamic recrystallization during creep of single-crystalline halite: an experimental study. Journal Geophysical Research, 84: 5557-5567.
  • 27. Handin, J.W., Hager, R.V. Jr., 1958. Experimental deformation of sedimentary rocks under confining pressure: tests at high temperature. AAPG Bulletin, 42: 2892-2934.
  • 28. Hansen, F.D., Carter, N.L., 1980. Creep of rock salt at elevated temperature. Proceedings of 21st U.S. Symposium on Rock Mechanics, May 27-30, 1980, Rolla, Missouri: 217-226.
  • 29. Hunsche, U., Hampel, A., 1999. Rock salt - the mechanical properties of the host rock material for a radioactive waste repository. Engineering Geology, 52: 271-291.
  • 30. Hunsche, U., Mingerzahn, G., Schulze, O., 1996. The influence of textural parameters and mineralogical composition on the creep behavior of rock salt. In: The Mechanical Behavior of Salt III, Proceedings of Third Conference, Palaiseau (France) 1993 (eds. M. Ghoreychi et al.): 143-151. Trans Tech Publications, Clausthal.
  • 31. Jackson, P.M., Hudec, M.R., 2017. Salt Tectonics: Principles and Practice. Cambridge University Press, Cambridge.
  • 32. Jeremic, M.L., 1994. Rock Mechanics in Salt Mining. CRC Press, Balkema Rotterdam.
  • 33. Kłapciński J., 1964a. Stratigraphy of the Zechstein in the areas of Lubin, Sieroszowice and Wschowa (in Polish with English summary). Rocznik Polskiego Towarzystwa Geologicznego, 34: 65-93.
  • 34. Kłapciński, J., 1964b. Paleogeographical characteristics of the Zechstein of the Fore-Sudetic Monocline (in Polish with English summary). Rocznik Polskiego Towarzystwa Geologicznego, 34: 551-577.
  • 35. Kłapciński, J., 1966. Stratigraphy of the Werra-Anhydrites in the region of Lubin and Sieroszowice (Lower Silesia) (in Polish with English summary). Rocznik Polskiego Towarzystwa Geologicznego, 36: 65-78.
  • 36. Kłapciński, J., 1971. Lithology, fauna, stratigraphy and paleogeography of the Permian in the Fore-Sudetic Monocline (in Polish with English summary). Geolgia Sudetica, 5: 77-135.
  • 37. Kukiałka, P., Toboła, T., 2018. Petrological and geochemical characterstic of Lotsberg Salt Formation in Central Alberta (Canada) (in Polish with English summary). Przegląd Solny, Rocznik Polskiego Stowarzyszenia Górnictwa Solnego, 14: 77-87.
  • 38. Liang, W., Zhang, C., Gao, H., Yang, X., Xu, S., Zhao, Y., 2012. Experiments on mechanical properties of salt rocks under cycling loading. Journal of Rock Mechanics and Geotechnical Engineering, 4: 54-61.
  • 39. Markiewcz, A., 2007. Thin-skinned structure of the south of Foresudetic Monocline vs. management of Na1 salt (in Polish with English abstract). Przegląd Solny, Gospodarka Surowcami Mineralnymi PAN, 23, Spec. Issue, 1: 35-49.
  • 40. Natkaniec-Nowak, L., Toboła, T., 2003. Blue Salt from Kłodawa (Kujawy, Poland) (in Polish with English summary). Przegląd Geologiczny, 51: 435-438.
  • 41. Ney, R., Burzewski, W., Bachleda, T., Górecki, W., Jakóbczak, K., Słupczyński, K., 1974. Outline of paleogeography and evolution of lithology and facies of Miocene layers on the Carpathian Foredeep (in Polish with English summary). Prace Geologiczne, 82.
  • 42. N'jock, M.Y., Chicot, D., Ndjaka, J.M., Lesage, J., Decoopman, X., Roudet, F., Mejias, A., 2015. A criterion to identify sinking-in and piling-up indentation of materials. International Journal of Mechanical Sciences, 90: 145-150.
  • 43. Peng, S., Zhang, J., 2007. Engineering geology for underground rocks. Springer-Verlag, Berlin Heidelberg.
  • 44. Peryt, T.M., 1981. Zechstein in the neighbourhood of the Fore-Sudetic Block (in Polish with English summary). Kwartalnik Geologiczny, 25 (1): 75-91.
  • 45. Pinińska, J., 2011. The reliability of evaluation of elastic properties of rocks at great depths. Biuletyn Państwowego Instytutu Geologicznego, 446: 149-156.
  • 46. Poborski, J., 1952. Złoże solne Bochni na tle geologicznym okolicy (in Polish). Biuletyn Instytutu Geologicznego, 78.
  • 47. Poborski, J, Skoczylas-Ciszewska, K., 1963. Tektogeneza mioceńskich złóż soli na Podkarpaciu Zachodnim. Sprawozdania z Posiedzeń Komisji Naukowych PAN, Oddział w Krakowie, Lipiec-Grudzień 1963: 528-530.
  • 48. Rabier, J. , Pizzagalli, L., Demenet, J.L., 2010. Dislocations in Silicon at High Stress. In: Dislocations in Solids (eds. J.P. Hirth and L. Kubin): 47-108. The Netherlands.
  • 49. Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, 12.
  • 50. Schléder, Z., Urai, J., 2005. Microstructural evolution of deformation-modified primary halite from Hengelo, the Netherlands. International Journal of Earth Sciences, 94: 941-956.
  • 51. Schléder, Z., Urai, J., 2007. Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). Journal of Structural Geology, 29: 241-255.
  • 52. Schultze, O., Popp, T., Kern, H., 2001. Development of damage and permeability in deforming rock salt. Engineering Geology, 61: 163-180.
  • 53. Shakoor, A., Hume, H.R., 1981. Mechanical properties. National Bureau of Standards Monograph, 167: 104-203.
  • 54. Shlichta, P.J., 1968. Growth, deformation, and defect structure of salt crystals. GSA, Special Papers, 88: 597-617.
  • 55. Sonnenfeld, P., 1995. The color of rock salt - a review. Sedimentary Geology, 94: 267-276.
  • 56. Stevenson, M.E., Kaji, M., Bradt, R.C., 2002. Microhardness anisotropy and the indentation size effect on the basal plane of single crystal haematite. Journal of the European Ceramic Society, 22: 1137-1148.
  • 57. Szybist, A., 1976. Rock salt deposit in the Legnica-Głogów Copper Basin (in Polish with English summary). Przegląd Geologiczny, 24: 572-576.
  • 58. Ter Heege, J.H., De Bresser, J.H.P., Spiers, C.J., 2005. Dynamic recrystallisation of wet synthetic polycystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics, 396: 35-57.
  • 59. Toboła, T., 2010. Inclusions in bituminous salts from Kłodawa Salt Dome (in Polish with English summary). Kwartalnik AGH Geologia, 36: 345-365.
  • 60. Toboła, T., 2014. The influence of tectonics on petrological characteristics of anhydrite and anhydrite-halite intercalations in the Oldest Halite (Na1) (Zechstein, Upper Permian) of the Bądzów area (SW Poland). Geological Quarterly, 58 (3): 531-542.
  • 61. Toboła, T., 2016. Inclusions in anhydrite crystals from blue halite veins in the Kłodawa Salt Dome (Zechstein, Poland). Geological Quarterly, 60 (3): 572-585.
  • 62. Toboła, T., Markiewicz, A., 2009. Fluid inclusions in the Oldest Halite (Na1) in Głogów area (SW Poland) - preliminary results (in Polish with English summary). Kwartalnik AGH Geologia, 35: 349-371.
  • 63. Toboła, T., Natkaniec-Nowak, L., ed., 2008. Blue Halite of the Kłodawa Salt Dome (in Polish with English summary). Uczelniane Wydawnictwo Naukowo-Dydaktyczne AGH.
  • 64. Toboła, T., Wachowiak, J., 2018. Evidence of high-temperature rock salt transformations in the areas of occurrence of borate minerals (Zechstein, Kłodawa salt dome, Poland). Geological Quarterly, 62 (1): 134-145.
  • 65. Toboła, T., Natkaniec-Nowak, L., Szybist, A., Misiek, G., Janiów, S., 2007. Blue Salts in Kłodawa Salt Mine (in Polish with English summary). Gospodarka Surowcami Mineralnymi PAN, 23, zeszyt spec., 1: 117-132.
  • 66. Urai, J.L., Schléder, Z., Spiers, C.J., Kukla, P.A., 2008. Flow and transport properties of salt rocks. Dynamics of Complex Intracontinental Basins: The Central European Basin SystemIn (eds. R. Littke, U. Bayer, D. Gajewski and S. Nelskamp). Springer, Berlin.
  • 67. Wesełucha-Birczyńska, A., Toboła, T., 2016. Hydrocarbon alteration in the bituminous salt of the Kłodawa Salt Dome (Central Poland). Marine and Petroleum Geology, 75: 325-340.
  • 68. Wesełucha-Birczyńska, A., Toboła, T., Natkaniec-Nowak, L., 2008. Raman microscopy of inclusions in blue halites. Vibrational Spectroscopy, 48: 302-307.
  • 69. Wachowiak, J., Toboła, T., 2014. Phase transitions in the borate minerals from the Kłodawa salt dome (central Poland) as indicators of temperature processes in salt diapirs. Geological Quarterly, 58 (3): 543-554.
  • 70. Walley, S.W., 2012. Historical origins of indentation hardness testing. Materials Science and Technology, 28: 1028-1044.
  • 71. Wardlaw, N.C., Watson, D.W., 1966. Middle Devonian Salt Formations and Their Bromide Content, Elk Point Area, Alberta. Canadian Journal of Earth Sciences, 3: 263-278.
  • 72. Werner, Z., Poborski, J., Orska, J., Bąkowski, J., 1960. A geological and mining outline of the Kłodawa salt deposit (in Polish with English summary). Prace Instytutu Geologicznego, 30: 467-512.
  • 73. Wiewiórka. J., 1984. Geologia wielickiego złoża solnego (in Polish). In: Wieliczka - skarb solny (ed. M. Broniowska): 18-20. Krajowa Agencja Wydawnicza, Warszawa.
  • 74. Zelek, S., Stadnicka, K., Szklarzewicz, J., Natkaniec-Nowak, L., Toboła, T., 2008. Halite from Kłodawa: the attempt of correlation between lattice deformation and spectroscopic properties in UV-VIS (in Polish with English summary). Gospodarka Surowcami Mineralnymi PAN, 32: 159-172.
  • 75. Zelek, S., Stadnicka, K., Toboła, T., Natkaniec-Nowak, L., 2014. Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineralogy and Petrology, 108: 619-631.
  • 76. Zhang, P., Li, S.X., Zhang, Z.F., 2011. General relationship between strength and hardness. Materials Science and Engineering A, 529: 62-73.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-286134f9-ec9a-4f41-983c-8e93ff7a56e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.