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Microhardness tests were carried out on single halite crystals. They were conducted on the (001) surface, with the indenter
set in two directions: parallel to the halite face (010); and parallel to the (110) face. The halite crystals represent salt forma-
tions of different ages (Devonian, Zechstein, Badenian), depths (from 1835.5 to 195 m) and intensities of tectonic distur-
bance (horizontally stratified, salt dome, strongly folded). The measurement results revealed specific features of the halite
crystals analysed. Firstly, the data obtained show microhardness anisotropy in halite crystals. Moreover, microhardness cor-
relates with the depth of the salt-bearing formations. Halite crystals from deeper levels showed higher microhardness,
though there was no correlation between the intensity of tectonic deformation and the average Vickers hardness (HV). The
samples analysed show a variability of HV values and and of the shapes of imprints. These indicate zones where halite crys-
tals are deformed at the atomic level and reflects the presence of defects in the crystal lattice. Such deformation is reflected
in an irregularity of the strike of cleavage planes. Consequently, the analysis of imprint shapes is a useful method for the ex-

=

amination of ductile minerals and materials.
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INTRODUCTION

Rock salt has been extensively studied over recent years as
regards its unique mechanical properties. Due to these, rock
salt is often considered for geotechnical and industrial applica-
tions e.g., storage caverns. In conventional laboratory tests,
rock salt shows both brittle and ductile behaviour. It exhibits a
brittle behaviour up to the elastic stress limit; when loading ex-
ceeds the elastic limits. plastic behaviour is shown via ductile
deformation. Ductile rock salt behavior results from its crystal-
line structure, the internal structure of halite crystals, impurities
content and distribution as well as the presence of fluid inclu-
sions (e.g., Carter and Hansen, 1983; Fossum et al., 1993;
Jeremic, 1994; Hunsche and Hampel, 1999; Schulze et al.,
2001; Liang et al., 2012; Cyran et al., 2016). Moreover, rock salt
contributes to the evolution of salt structures, affects, regional
tectonics and lubricates deformation structures in sedimentary
basins (Jackson and Hudec, 2017).
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Unlike most rock-forming minerals, halite shows noticeable
rheological properties even at room temperature and has the
ability to recrystallize, particularly in the presence of water
(Carter and Hansen, 1983; Drury and Urai, 1990; Carter et al.,
1993; Hunsche et al., 1996; Schléder and Urai, 2005, 2007;
Desbois et al., 2012). The deformation of halite single crystals
has been studied by many researchers, including Buerger
(1930a, b, c), Christy (1956), Hadin and Hager (1958) and
Shlichta (1968). It was observed that halite crystals deform by
slip along crystallographic planes in two slip systems: the pri-
mary slip system is along the crystallographic plane (100) with
secondary slip systems (110) and (111). Moreover, Carter and
Heard (1970) and Davidge and Pratt (1964) noted that the pri-
mary slip system is favoured by lower stress and temperatures.
The temperature dependence of the secondary slip systems is
much higher.

The inner structure of halite undergoes deformation under
stress in natural conditions. The resulting deformation results in
defects of the crystal lattice. A deviation from cubic symmetry in
halite crystals was indicated in blue halite (Zelek et al., 2008,
2014). Another result of defects in a crystal lattice is birefrin-
gence determined in blue halite crystals (Buerger, 19303;
Shlichta, 1968; Carter and Hansen, 1983; Sonnenfeld, 1995).

Indentation techniques (microhardness tests) has been
widely used as a non-destructive method of assessing the me-
chanical properties of materials. Understanding why materials
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Fig. 1A — distribution of rock salt within the Devonian Elk Point Group in Alberta (Grobe, 2000); B — tectonic units in Poland with
location of salt deposits

differ in hardness and indeed what hardness actually is, led to
widespread adoption of indentation methods in the laboratory.
In order to preserve geometrical similarity during an indenta-
tion, indenters in the shape of a four-sided diamond pyramid
(the Vickers test) and three-sided pyramid (Berkovic test) were
developed (Walley, 2012). In indentation tests of materials that
exhibit rheological properties, plastic deformation must be con-
sidered along with elastic deformation (Atkinson et al., 2013).
Consequently, halite in microhardness tests should be consid-
ered as elastic—plastic material.

The research described in this paper compares the micro-
hardness of halite crystals from different salt-bearing formations.
These salt-bearing formations occur at different depths, have
distinct geological and tectonic histories and are built of halite
crystals that underwent various conditions of stress and temper-
ature. These conditions had an impact on the halite crystals, re-
sulting in their deformation including the creation of lattice de-
fects. These halite lattice defects should therefore be reflected in
the results of microhardness tests. Furthermore, microhardness
in halite crystals has so far been little studied (Brooks et al., 1975;
Shakoor and Hume, 1981; Aptukov et al., 2010).

MATERIALS

Microhardness measurements were carried out on halite
crystals collected from: the Lotsberg Salt Formation (Canada,
Devonian); the Fore-Sudetic Monocline (Poland, Zechstein);
the Ktodawa Salt Dome (Poland, Zechstein); and the Wieliczka
and Bochnia Salt Mines (Poland, Badenian). The Lotsberg Salt
Formation located in Alberta is the oldest salt formation in the
Canadian area (Fig.1A). It belongs to the sedimentary rock se-

quence known as the Elk Point Group (Wardlaw and Watson,
1966). Itis underlain by the Basal Red Beds and overlain by the
Ernesta Lake Formation. The Lotsberg Salt Formation lies hori-
zontally, and is undisturbed by tectonics. It is subdivided into a
lower and upper part, separated by a layer of red dolomitic
shale. In both parts, the salt rocks are composed of coarse-
grained halite with a small amount of dolomite and clay impuri-
ties (Kukiatka and Tobotfa, 2018). The halite crystals range in
size from ~1 cm to a few centimetres. The microhardness test
sample was taken from the Pembina 22A borehole at depth
1835.5 m.

The second sample analysed was taken from the Oldest Ha-
lite (Na1) occurring in the Lubin—Gtogéw Copper District (LGOM,;
Fig. 1B). The Oldest Halite is represented by halite crystals up to
15 cm in size which occur as veins or nests within the Na1 pri-
mary salts (Tobota and Markiewicz, 2009). The LGOM is part of
the Fore-Sudetic Monocline and it is built of Permian and Triassic
strata. The Permian unit is subdivided into terrestrial (Rotliegend)
and marine (Zechstein) deposits. The Zechstein deposits are
composed of four evaporite cyclothems but only the lowest
cyclothem (PZ1) is fully developed and includes a rock salt layer
(Na1) in the LGOM area (Ktapcinski, 1964a,b, 1966, 1971;
Szybist, 1976; Peryt, 1981). The salt layer (Na1) strikes
WNW-ESE and dips at 3—-8° (locally 15°) toward the NE. The in-
ternal structure of the salt layer is complicated with various types
of folds, shear zones, flexures and fault zones that indicate
large-scale salt movement (Banaszak et al., 2007; Burliga, 2007;
Markiewicz, 2007; Tobota, 2014).

The third sample represents a “blue halite” (Natkaniec-
Nowak and Tobota, 2003; Tobota et al., 2007; Tobota and
Natkaniec-Nowak, 2008; Wesetucha-Birczynska et al., 2008;
Zelek et al., 2008, 2014; Tobota, 2016) while the fourth sample
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was taken from bituminous salts (Tobota, 2010;
Wesetucha-Birczyriska and Tobota, 2016). Both types of salt
occur in the Klodawa Salt Dome (central Poland) in the form of
veins or nests within almost all the Zechstein deposits (Fig. 1B).
The Klodawa Salt Dome is the largest salt structure in Poland. It
belongs to the lIzbica Kujawska—teczyca salt ridge (e.g.,
Werner et al., 1960; Wachowiak and Tobota, 2014; Tobota,
2016; Tobota and Wachowiak, 2018). The length of the dome is
~26 km in the NW-SE direction and its width varies from 0.5 to
2 km. The salt dome is built of rocks representing the fully devel-
oped Zechstein PZ2—PZ4 cyclothems composed of claystones,
dolomites, anhydrites, rock salts and K-Mg salts. The lowest
cyclothem PZ1 is known as tectonically transported blocks
(Charysz, 1973; Burliga et al., 1995). All these deposits were
highly disturbed by halotectonic and halokinetic processes dur-
ing uplift of the dome.

The fifth and sixth samples were taken from the Wieliczka
and Bochnia salt deposits respectively (Fig. 1B). These samples
represent primary halite crystals from the brecciated part of the
Wieliczka salt deposit and the Middle Salt member of the
Bochnia salt deposit. Both salt deposits are located at the front of
the Carpathian Thrust, within a narrow belt of folded Badenian
strata, regarded as an allochthonous unit (e.g., Poborski and
Skoczylas-Ciszewska, 1963; Ney et al., 1974; Garlicki, 1979).
The development of this unit and of the Badenian salt deposits
(Wieliczka, Bochnia) is closely connected with Carpathian
orogenic movements. Therefore, the Wieliczka and Bochnia salt
deposits are strongly elongated in an E-W direction and narrow
(up to 1 km) in a N-S direction. The inner structure of these de-
posits is complicated due to strong folding (Poborski, 1952;
Wieworka, 1984; Cyran and Tobota, 2006, 2007).

METHODS

The microhardness tests were performed on the halite sam-
ples prepared as thick sections (plates). The thick plates were
obtained by cutting the single halite crystals parallel to their
cleavage. The dimensions of the thick plates were: thickness
~3 mm, length and width ~2 cm. Both surfaces of the thick sec-
tions were manually gently polished on felt with the addition of a
diamond suspension. The quality of polished surfaces was con-
trolled under a microscope in reflected light.

The resistance of the halite crystals to the stress exerted by
external pressure acting on a point was measured as their micro-
hardness (HV). The indentation tests were conducted using a
hardness tester Testlab HVKD-1000IS with a pyramidal diamond
indenter (the Vickers method). In order to choose the optimal
load, three force values were tested: 0.25 kgf = 0.245 N, 0.5 kgf =
0.49 N, 1.0 kgf = 0.98N. The optimal load allowed observations of
indentation marks under the microscope with a 40x objective.
The value of 0.5 kgf = 0.49 N was chosen. Next, the chosen load
was calibrated based on the microhardness standard (provided
by the manufacturer). The microhardness was expressed as a
quotient of the indenter load (0.5 kgf = 0.49 N, indenting time =
10 sec.) and indentation depth calculating as a trigonometric re-
lation from the lengths of the diagonals of the indentation marks
(imprints). The indentation tests were performed in two versions.
In the first version measurements were made in the areas paral-
lel to the (100) and (010) faces of the halite crystal. In each area,
measurements were performed along three lines that consist of
10 points. The lines were spaced at a distance of 1 mm from
each other and the distance between indentation points in each
line was also 1 mm. Thereby, 30 microhardness values (HV)
were obtained for each sample analysed and converted into
MPa. In the second version of the indentation test, measure-

Fig. 2. Measurement methodology of a shift in the geometric
centre of an imprint

ments were performed along two additional lines for three se-
lected samples. Lines were arranged parallel to the (110) and
(11'0) faces of the hallite crystals. The lines and points were simi-
larly spaced 1 mm apart, providing, an additional 20 microhard-
ness (HVy5) values for each sample. All measurement results
were used for calculating basic statistical parameters. Moreover,
the shapes of the indentation marks (imprints) were analysed for
all samples. Attention was paid to all distortions in the shape of
an imprint, which were classified according to the description of
Craig and Vaughan (1994). In order to check the irregularities
observed in the indentation marks, the lengths of the diagonals
and position of the geometric centre were analysed. The lengths
of the two diagonals (Dy, D, on Fig. 2) recorded in the indentation
tests were compared in each indentation mark for each sample
analysed. The ratios between the two diagonals were calculated
and shown on the graphs. The position of the geometric centre in
each indentation mark and its shift in the horizontal and vertical
direction was measured according to the methodology shown in
Figure 2. The shift in a horizontal and vertical direction was cal-
culated as ratios of Dy4/Dy, and D,+/D, respectively. In this way,
when there was no shift of a geometric centre, the ratio is 0.5.

RESULTS

The results of the indentation tests are displayed as maps
(Fig. 3), which show, with help of a colour scale, the range of
measured HV in indentation points. As a result, there is no infor-
mation about HV values in the area between these points. For
this reason, in order to estimate HV values between indentation
points, a Kriging method was applied. The Kriging method en-
ables prediction of the value of a function at a given point by
computing a weighted average based on the surrounding mea-
sured values.

The results of performed indentation tests indicated a
large variability in average microhardness (HV), as calculated
for all samples analysed. A large variation in microhardness
(HV) value and its distribution within each thin section was no-
ticed for most samples analysed. Moreover, the recorded in-
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Fig. 3. Microhardness distribution within the samples (maps for the first version of the indentation test)
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Table 1
HV values registered in the indentation test
First test version Second test version
Sample no. 1 2 3 4 5 6 2 4 6
) ) Kiodawa Ktodawa bi- o ) Ktodawa bi- )
Location Pembina LGOM blue halite tur:érlltgus Wieliczka Bochnia LGOM tu?;th;us Bochnia
Depth [m] 1835.5 950.0 630.0 720.0 135.0 195.0 950.0 720.0 195.0
'”dgg}ﬁtt"’” HV value [MPa]
1 234.4 210.9 198.1 212.8 181.4 181.4 188.3 192.2 163.8
2 2334 207.9 221.6 198.1 177.5 200.1 182.4 193.2 165.7
3 218.7 207.9 170.6 209.9 193.2 192.2 182.4 195.2 163.8
4 211.8 206.9 176.5 204.0 177.5 179.5 181.4 183.4 162.8
5 216.7 204.0 176.5 1971 162.8 182.4 183.4 200.1 161.8
6 200.1 205.9 191.2 204.0 171.6 148.1 185.4 200.1 164.8
7 214.8 205.9 186.3 202.0 179.5 170.6 182.4 196.1 163.8
8 239.3 208.9 180.4 223.6 164.8 176.5 189.3 191.2 167.7
9 176.5 199.1 205.0 203.0 163.8 180.4 186.3 187.3 160.8
10 217.7 203.0 222.6 197.1 163.8 178.5 189.3 188.3 162.8
11 214.8 205.0 194.2 202.0 247.1* 173.6 188.3 226.5 159.9
12 220.7 200.1 197.1 200.1 160.8 181.4 188.3 211.8 161.8
13 230.5 204.0 172.6 194.2 162.8 179.5 177.5 199.1 160.8
14 234.4 200.1 192.2 192.2 160.8 174.6 183.4 189.3 161.8
15 228.5 190.3 191.2 210.9 172.6 172.6 181.4 176.5 160.8
16 202.0 205.9 186.3 215.8 158.9 169.7 179.5 182.4 165.7
17 214.8 205.9 202.0 206.9 165.7 170.6 178.5 186.3 163.8
18 205.9 201.0 185.4 214.8 158.9 167.7 183.4 187.3 173.6
19 227.5 202.0 198.1 208.9 166.7 171.6 180.4 184.4 162.8
20 252.0 206.9 189.3 196.1 190.3 169.7 185.4 188.3 160.8
21 218.7 204.0 198.1 206.9 173.6 165.7
22 221.6 206.9 206.9 194.2 182.4 169.7
23 201.0 205.9 212.8 224.6 160.8 166.7
24 205.0 199.1 191.2 204.0 160.8 164.8
25 221.6 201.0 187.3 219.7 162.8 169.7
26 223.6 201.0 189.3 214.8 290.3* 170.6
27 213.8 207.9 177.5 209.9 254.0* 170.6
28 231.4 197.1 184.4 227.5 194.2 176.5
29 207.9 203.0 204.0 183.4 165.7 167.7
30 205.0 189.3 190.3 196.1 167.7 166.7
Average 218.1 203.2 192.6 205.8 170.4 173.6 183.8 193.0 163.5
X +5.59 +1.88 +4.94 +3.97 +4.20 +3.51 +1.69 +5.21 +1.45
Me 218.2 204.0 191.2 204.0 165.7 171.1 183.4 190.3 162.8
c 14.4 4.9 12.8 10.2 10.4 9.1 3.5 10.8 3.0
CcVv 6.6 2.4 6.6 5.0 6.1 5.2 1.9 5.6 1.8

* — rejected due to abnormally high values caused by the ingrowth of anhydrite crystals; x — measurement error determined by the Stu-
dent-Fisher method; Me — median; ¢ — standard deviation; CV- coefficient of variation

dentation shapes (imprints) show some irregularities in all
samples analysed.

In the first test version, the highest HV values from all sam-
ples analysed, both in indentation points and in the average
value of HV, were recorded in sample no. 1 from the Lotsberg
Fm. The values recorded in indentation points reached above
196.1 MPa with a maximum of 252.0 MPa (Table 1 and
Fig. 3A), except for one point in which the HV value was
176.5 MPa. HV values recorded in indentation points that are
shown in Figure 3A show irregular zonal distribution within the
sample (Fig. 3A). Areas characterized by high HV are sepa-

rated by zones of low HV. Each zone consists of intervals repre-
sented by several points characterized by the same HV value
(Fig. 3A). Areas of high HV are elongated in the left part of the
map but in the right part there are two small areas divided by a
low HV zone. Moreover, high variability in HV value is visible on
the right side of the map (Fig. 3A).

The shapes of imprints in the halite from Pembina are the
most irregular among all the samples analysed in the first test
version. The imprints are elongated laterally (Figs. 4A—-C and
5A). The geometric center of the imprint is shifted laterally and
slightly vertically (Fig. 4A—C). The irregular shape of imprints is
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Fig. 4. The shapes of imprints registered in the first test version [parallel to the (100) and (010) faces]

A-C — Pembina; D-F — LGOM, G-I — Ktodawa blue halite; J-L — Klodawa bituminous salts; M-O — Wieliczka; P-S — Bochnia
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Fig. 5. The ratio between the length of diagonals recorded in the first test version

further indicated by the ratio between diagonals which varies
from 0.86 to 1.10 (Fig. 6A). A convex shape of the imprint edges
(Fig. 4A) prevails in the vast majority of indentation points,
though, a few imprints are slightly sigmoidal (Fig. 4B,C). How-
ever, the point at which the HV value was the lowest showed a
more regular shape (Fig. 4A).

High HV values were registered in sample no. 2 from the
LGOM (Table 1 and Fig. 3B). The average HV recorded in this
sample was 203.0 MPa. This sample is characterized by the
lowest variability of HV values among all samples analysed. HV
values registered in indentation points range from 189.3 MPa to
210.9 MPa (Table 1). In the map, there are only four HV inter-
vals arranged in several irregular zones (Fig. 3B). The intervals
of the lowest HV values are located in the central area and in the
right lower corner of the map. The zones distinguished by high
HV comprise the top left and right parts of the map (Fig. 3B).

All indentation marks recorded in sample no. 2 are distin-
guished from other imprints analysed in the first test version by
a regular shape (Fig. 4D—F). The ratio between diagonals is

close to 1.0 in most cases (Fig. 5B). However, some irregulari-
ties in imprint shapes are visible. There is a slight lateral shift of
the geometric centre (Fig. 6B) and the edges are slightly con-
vex and sigmoidal (Fig. 4 E, F).

In the Klodawa blue halite sample, zonation and large vari-
ability of HV values is clearly visible. The HV values measured
at all indentation points are the range of 170.6 and 222.6 MPa
while the average HV reached a value of 192.2 MPa (Table 1).
There are two circular areas of high HV located in the right up-
per and left upper corners of the map (Fig. 3C). An elongated
zone of the lowest HV is situated at the left side of the map near
an area of higher HV values. Generally, the central area of the
map is dominated by intervals of low HV. However, indentation
points marked by high HV are grouped in the left and right parts
of the map (Fig. 3C).

In blue halite from Ktodawa (sample no. 3) an irregular
shape of the imprints dominates (Fig. 4G-I). The distortion of
imprint shape is reflected by elongation in the lateral and verti-
cal directions. This irregularity of imprint shape is reflected by
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the ratio between diagonals which varies from 0.86 to 1.08
(Fig. 5C) and by the shift of the geometric centre (Fig. 6C). The
edges of imprints are very irregular, mostly convex (Fig. 4G, H)
and slightly sigmoidal (Fig. 41).

The microhardness characteristics of bituminous halite
from Ktodawa (sample no. 4) are different from that described
for the blue halite. The average HV of bituminous halite is like
that calculated for the LGOM and reaches 205.80 MPa. How-
ever, HV values recorded in indentation points range from
183.4 to 227.5 MPa. This variety is reflected in the map
(Fig. 3D) where several irregular zones marked by different HV
intervals are visible. The zones of high HV are concentrated in
the lower part of a map. The points at which the lowest HV were

calculated are located in the bottom right and a left central areas
of the map (Fig. 3D).

The shape of imprints in sample no. 4 are also very irregu-
lar. The edges of imprints recorded for bituminous halite are
more irregular than the edges in blue halite (Fig. 4J-L). The
edges of imprints are characterized by sigmoidal and slightly
convex shapes (Fig. 4J-L). The irregular shape of an imprint is
reflected by the ratio between diagonals that varies from 0.88 to
1.10 (Fig. 5D) and a shift of the geometric centre in both lateral
and vertical directions (Fig. 6D).

The average HV calculated for sample no. 5 from Wieliczka
is lower than values of other samples and amounts to
179.5 MPa. HV values measured in indentation points vary and
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Fig. 7. Microhardness distribution within the samples (maps for the second version of the indentation test)

range from 158.9 to 194.2 MPa (Fig. 3E). The distribution of HV
intervals within the sample shown in the map is irregular but
dominated by zones of low HV values. The intervals of the high-
est HV comprise three circular areas at the top, bottom and right
side of the map. Consequently, intervals of low HV values fill the
remaining space in the map (Fig. 3E).

The imprints in sample no. 5 are distinguished from other
samples analysed in the first test version. The shape of imprints
appears to be elongated in a vertical direction at first sight
(Fig. 4M-0). However, distortion in the shape of imprints is
caused primarily by a shift of the geometric centre (Fig. 6E). Ad-
ditionally, the ratio between diagonals ranges from 0.92 to 1.08
(Fig. 5F). The edges of imprints are mostly sigmoidal, concave
and more regular than in the samples from Klodawa
(Fig. 4M-0).

The lowest average HV was calculated for sample no. 6
from Bochnia (Table 1 and Fig. 4) and amounts to 173.6 MPa.
Although the HV recorded in the indentation points ranges from
148.1 to 200.1 MPa, the great majority of HV values are below
176.5 MPa. This is reflected in the distribution of HV intervals
within the sample shown in the map (Table 1 and Fig. 3F).
There is only one area of high HV value visible, in the left top of
the map. Low HV intervals are located in the central and right
parts of the map (Fig. 3F).

The indentation shapes in sample no. 6 are more regular
(Fig. 4P-S) than imprints from Klodawa, Pembina and
Wieliczka. The regular shape is reflected by the ratio between
diagonals that is close to 1.0 (Fig. 5E). However, there are
some irregularities in the edges of the imprints (Fig. 4P-S) as
well as a slight shift of the geometric centre mostly in a lateral di-
rection (Fig. 6F). A convex shape of edges dominates in most
imprints.

In the second test version, features such as irregular distri-
bution of HV intervals, high variability of HV values in indenta-
tion points and distortion of imprints were observed.

The average HV values calculated in the second test ver-
sion are slightly lower than in the first test version for all samples
analysed. Moreover, the range of HV values calculated in in-
dentation points is narrower compared to the results from the
first test version.

In the sample from the LGOM, the average HV recorded in
the indentation points is 183.4 MPa. As in the first test version,
the sample from the LGOM is characterized by the lowest vari-
ability of HV values among all samples analysed and ranges
from 177.5 to 189.3 MPa (Table 1 and Fig. 7A). In the map, the
lowest HV intervals are located in two zones at the top of the
map. However, irregular zones of high HV comprise the left side
and right bottom of the map (Fig. 7A).

The shape of imprints in sample no. 7 is rather regular as in
the first test version (Fig. 8A—C). The regularity of an imprint is
marked by a ratio between diagonals that is close to 1.0
(Fig. 9A). However, there are some slight distortions in the
shape of edges that are slightly concave, with a slight shift of the
geometric centre in a lateral and vertical direction (Fig. 10A).

The highest average HV (193.0 MPa) in the second test
version was registered for bituminous halite from Ktodawa. HV
values recorded in the indentation points comprise a wide vari-
ety of values from 176.5 to 226.5 MPa (Fig. 7B). A map of HV
registered in the indentation points shows several irregular
zones marked by different HV intervals. The zones of high HV
are located in the left part and at the bottom of the map
(Fig. 7B). The points at which the lowest HV were recorded are
grouped in the top central area of the map.
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Fig. 8. The shape of imprints registered in the second test version (parallel to the (110) and (11'0) faces): A—C—
LGOM, D-F - bituminous salts, Klodawa; G-I — Bochnia

1,10 1,10 - <
A LGOM B Klodawa bituminous salt
1,00 1,00
0,90 0,80
2 o
T 080 § os0
& &
= ]
8070 & 070
0,50 0,60
0,50 050
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample Sample
1,10 =
C Bochnia
1,00 —
0,90
2 0g0
AN N S S N .
g 0
g
=
& 070
0,80
0,50 . . . .
B E SR e L e R S e S Fig. 9. Ratio between the length of diagonals recorded in

Sample

the second test version



Microhardness analysis of halite from different salt-bearing formations 781

0.7 0.7
A LGOM B _ P_(iodawa
] bituminous salts
0.6 06 | 5 .
D> .-, - ' * o o .
. s o
""';; 0.5 . . *-' 0.5 . * .
(|
0.4 0.4
0.3 T T T 0.3 \ ‘ - ‘

0.3 0.4 0.5 0.6

07, G

Bochnia

0.6
D> L4 .:l
~ 0.5 B
Dg °:‘.o.'.

0.4 -

0.3’ T T T

0.3 0.4 0.5 0.6
D,./D,

07 0.3 0.4 0.5 06 07

D,,/D,

0.7

Fig. 10. Shifts in the geometric centre of imprints

Diagram for the second test version [parallel to the (100) and (11'0) faces]

The shape of imprints in bituminous halite from Ktodawa is
very irregular. The edges of imprints are sigmoidal and slightly
concave (Fig. 8D, E). Moreover, the ratio between diagonals
varies from 0.82 to 1.40 (Fig. 9B). The geometric centre of the
imprints is slightly shifted in a lateral direction (Fig. 10B).

The lowest average HV in the second test version was de-
termined for sample no. 9 from Bochnia (Table 1 and Fig. 7C)
and amounts to 163.8 MPa. The HV recorded in the indentation
points varies in a narrow range from 159.9 to 173.6 MPa. There
is only one area of high HV value visible in the right top of the
map, as in the first test version. Intervals of low HV comprise the
central and left parts of the map (Fig. 7C).

The indentation shapes in the sample from Bochnia ap-
pears less regular than in the imprints from the LGOM because
of the concave edges (Fig. 8F—H). However, there is only a
slight shift of the geometric centre in a lateral direction
(Fig. 10C) and the ratio between diagonals is close to 1.0
(Fig. 9C).

DISCUSSION

The samples analysed from different salt-bearing forma-
tions are characterized by high variability in average HV and a
broad range of HV values recorded in the indentation points.
This variability of HV values and HV distribution within each
sample studied was greater in the first version of the indentation

tests performed parallel to the (100) and (010) faces. Moreover,
the average HV calculated for the measurements in this direc-
tion were higher than the average HV determined in the direc-
tion parallel to the (110) and (11'0) faces. This supports the hy-
pothesis that the microhardness of these crystals is anisotropic
and related to the direction of the specific crystallographic plane
(Brookes et al., 1975; Craig and Vaughan, 1994; Stevenson et
al., 2002).

The average HV calculated in all analysed samples corre-
lates with the depth of salt-bearing formations related to these
samples (Fig. 11). This correlation probably results from the
lithostatic stress related to the weight of overburden rocks, the
geothermal gradient and the rheological properties of halite
(Peng and Zhang, 2007; Urai et al., 2008). Generally, all these
processes are connected with the broadly recognized
diagenesis and compaction of the deposits and they are well
recognized in such rocks. However, changes in physical and
mechanical properties in a single halite crystal in relation to the
depth have not been considered so far. The correlation de-
scribed above may result from halite’s ability to recrystallize and
undergo visco-plastic behaviour (Shlichta, 1968; Guillope and
Poirier, 1979; Carter and Hansen, 1983; Roedder, 1984; Ter
Heege et al., 2005) as well as to deformation of the crystal’s in-
ternal structure under various stress and temperature condi-
tions (Hansen and Carter, 1980). Nonetheless, the changes in
stress and temperature with depth and their influence on the
deposits are complex issues that cannot be considered linearly
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(Pininska, 2011). A deviation from cubic symmetry in halite
crystals was indicated in blue halite samples by the use of sin-
gle crystal X-ray diffraction methods (Zelek et al., 2008, 2014).
Moreover, polarized light microscopy observations revealed
optical anisotropy (birefringence) of blue halite crystals resulting
from the crystals’ deformation at the atomic level. The same op-
tical features were found in halite from Devonian rock salt de-
posits (Pembina) and in bituminous salts from Ktodawa. Optical
anisotropy (birefringence) recognized in crystals from Pembina
and Klodawa indicate the deformation of the halite internal
structure. Consequently, it is possible that deformation of the
halite crystals at the atomic level resulted in their higher micro-
hardness. It should be emphasized that a correlation between
average HV and the depth of salt-bearing deposits is not asso-
ciated with tectonic disturbances. The geological conditions of
the Pembina deposit which is part of the Lotsberg Salt Forma-
tion are not affected by tectonics. The Lotsberg Formation is lo-
cated at the largest depth among all formations analysed but it
is characterized by horizontal, undisturbed strata (\Wardlaw and
Watson, 1966; Kukiatka and Tobota, 2018). In contrast, the
Badenian Salt Formation is strongly folded but the tectonic
movements that had an impact on this formation took place at
shallow depth (e.g., Poborski, 1952; Poborski and Skoczylas-
Ciszewska, 1963; Ney et al., 1974; Garlicki, 1979; Wieworka,
1984; Cyran and Tobota, 2006, 2007). In case of the Zechstein
salt formation, halokinetic and halotectonic movements took
place at a great depth that included burial of salt deposits.

HV values recorded in indentation points vary in a wide
range for all samples analysed and similar HV values are dis-
tributed unequally within each sample studied. Areas distin-
guished by high HV are probably associated with a larger num-
ber of dislocations (structural imperfections in the crystal lattice)

present in the natural crystals. Otherwise, zones of low HV are
characterized by a lower number of dislocations which may re-
sult from partial recrystallisation. The presence of deformation
and its influence on indentation properties has been described
for many materials (Craig and Vaughan, 1994; Rabier et al.,
2010).

Moreover, a variability of HV values is consistent with distor-
tion in imprint shape. In halite from Pembina and Ktodawa, a
large variability in HV values and their distribution within a sam-
ple is associated with irregular shapes of imprints. Otherwise,
the samples from the LGOM are characterized by regular in-
dentation shapes and low variability of HV values. Occurrence
of distortion structures in the imprints analysed is probably af-
fected by several factors: irregular shape of cleavage planes,
susceptibility to plastic deformation and occurrence of disloca-
tions. These dislocations are both natural and induced as a re-
sult of the indentation test (Craig and Vaughan, 1994;
Stevenson et al., 2002). A convex shape of an imprint was
mostly observed for samples from Pembina, the LGOM and
Ktodawa that are characterised by high HV. The convex shape
reflects piling up of material against the faces of the indenter
due to the incompressibility associated with plastic deformation.
It occurs when movement of dislocations is restrained by other
internal defects and plastic strain concentrates near the inden-
tation area (Giannakopoulos and Suresh, 1999; Zhang et al.,
2011; N'jock et al., 2015). However, the concave shape reflects
a sinking-in of materials around the indenter when the plastic-
ally deformed region is pushed out from the indenter with the
imprint sinking below the initial surface level. Sinking-in occurs
when dislocation movement is easy (Giannakopoulos and
Suresh, 1999; Zhang et al., 2011; N’jock et al., 2015). A con-
cave shape was observed mostly in the sample from Wieliczka
and probably represents recrystallised halite from a boul-
der-rich part of the Wieliczka deposit.

Another analysed parameter was the shift of the imprints’
geometric centre within each sample. A shift may indicate crys-
tal deformation. However, a shift of imprint geometric centre
may result from preparation of a thick plate. In this case, all val-
ues should differ equally from 0.5 (0.5 represents a regular
shape in which a geometric centre is located in the middle of all
sides) but there is no dispersion of these values. In the imprints
analysed, a small dispersion of shift values was indicated in
samples from the LGOM and Bochnia (Fig. 6B, F). In the dia-
gram prepared for the sample from the LGOM (Fig. 6B) all
points are grouped near a value of 0.5. However, all points in
the diagram prepared for the sample from Bochnia are concen-
trated in the area of low H1/H ratio (left). This shift may indicate
some roughness in the surface of the thick plate. In the second
test version, the distribution of points in the diagram for Bochnia
is similar to that in the first test version. The diagram for the
LGOM shows a linear points distribution (Fig. 10A) that may in-
dicate a zone with defects of crystal structure. The samples
from Pembina, Klodawa and Wieliczka are characterised by
higher dispersion of shift values in the first test version (Fig. 6A,
C—E). The highest dispersion was noted in the sample from
Pembina and correlates with the highest HV values and a con-
vex shape of imprints. Because thick plates were prepared by
cutting the single halite crystals parallel to their cleavage, the
shift of an imprint's geometric centre is caused by irregular
strike (deformation) of cleavage planes. The irregular strike of
the cleavage planes is probably associated with deformation of
halite crystals caused by stress.

HV values recorded in indentation points during the indenta-
tion tests are higher that the results reported by Shakoor and
Hume (1981) but lower than data provided for samples previ-
ously deformed by uniaxial compression (Aptukov et al. 2010).
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Consequently, HV values registered for the samples analysed
are in the range between data reported in those papers. This
may indicate deformation of the crystal structure resulting from
natural conditions such as stress and temperature.

CONCLUSIONS

The results of indentation tests indicated several aspects of
microhardness characteristics in halite crystals. Firstly, the HV
values recorded at the indentation points differ depending on
the measurement direction. Higher HV values were obtained for
measurements parallel to the (100) and (010) faces of the halite
crystal while HV values registered parallel to the (110) and
(11'0) faces were lower. These results demonstrate an aniso-
tropy of halite microhardness. Moreover, in the first version of
the indentation test [parallel to the (100) and (010) faces] a
larger variability of HV values was noticed.

Secondly, analysis of the results revealed a correlation be-
tween the HV of halite and the depth of halite occurrence. The

average HV of halite crystals that occur at great depth is higher
than the average HV calculated for crystals located at shallow
depth. However, there is no correlation between the intensity of
of tectonic deformation and average HV.

Other aspects include a variability of HV values within the
samples and the distortion of an imprint's shape. These as-
pects indicated zones where halite crystals are deformed at the
atomic level and defects in the crystal lattice. Deformation of
halite crystals is reflected by irregularity in the strike of the
cleavage planes. Consequently, analysis of imprint shapes
(distortion of shape, shift in the geometric centre, proportion of
axes and diagonals) provides a useful method for examination
of mechanical properties in ductile minerals and materials.
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