PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Nanomaterials on Thermal Stability of 1,3,6,8-Tetranitro Carbazole

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
1,3,6,8-tetranitro carbazole (TNC) as a secondary explosive is used in composite explosive formulations in order to reduce the sensitivity and increase the stability of the explosive composites. In this work, the thermal stabilities of pure TNC and its nanocomposites prepared via three different nanoparticles were studied by thermal analysis, i.e. differential scanning calorimetery (DSC) and thermogravimetry (TG) techniques. Thermal analysis data revealed that the thermal behavior of pure TNC is significantly different from the nanocomposites studied. Pure TNC decomposed completely during a single step in the temperature range 385-425 °C. However, the addition of nanoparticles to the TNC powder leads to higher thermal stability in comparison with the pure TNC. The decomposition kinetics of TNC and its nanocomposites were studied by non-isothermal DSC at several heating rates. Thermokinetic and thermodynamic parameters corresponding to the thermal decomposition of pure TNC and nanocomposites were computed and compared. The results showed that the addition of nanoparticles to the TNC powder has a considerable effect on the thermal stability of the explosive.
Rocznik
Strony
201--216
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran
  • Nano Science Center, Imam Hossein University, Tehran, Iran
autor
  • Department of Chemistry, Imam Hossein University, Tehran, Iran
  • Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran
autor
  • Department of Chemistry, Imam Hossein University, Tehran, Iran
Bibliografia
  • [1] Ziersch, P. Ueber einige Carbazolderivate. Ber. Dt. Chem. Gesellsch. 1909, 42: 3797-3800.
  • [2] Fedoroff, B. T.; Sheffield, O. E. Encyclopedia of Explosives and Related Items. Picatinny, Arsenal 1966.
  • [3] Robidoux, P. Y.; Bardai, G.; Paquet, L.; Ampleman, G.; Thiboutot, S.; Hawari, J.; Sunahara, G. I. Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and Octahydro-1,3,5,7- tetranitro-1,3,5,7-Tetrazocine (HMX) in Spiked Artificial and Natural Forest Soils. Arch. Environ. Contam. Toxicol. 2003, 44: 198-209.
  • [4] Rahimi-Nasrabadi, M.; Zahedi, M. M.; Pourmortazavi, S. M.; Heydari, R.; Rai, H.; Jazayeri, J.; Javidan, A. Simultaneous Determination of Carbazole-based Explosives in Environmental Waters by Dispersive Liquid-Liquid Microextraction Coupled to HPLC with UV-Vis Detection. Microchim. Acta 2012, 177: 145-152.
  • [5] Shamsipur, M.; Pourmortazavi, S. M.; Hajimirsadeghi, S. S. Investigation on Decomposition Kinetics and Thermal Properties of Copper Fueled Pyrotechnic Compositions. Combust. Sci. Tech. 2011, 183: 575-587.
  • [6] Santos, A. F. O.; Basílio, J. I. D.; de Souza, F. S.; Medeiros, A. F. D.; Pinto, M. F.; de Santana, D. P.; Macêdo, R. O. Application of Thermal Analysis in Study of Binary Mixtures with Metformin. J. Therm. Anal. Calorim. 2008, 93: 361-364.
  • [7] Pourmortazavi, S. M.; Hosseini, S. G.; Hajimirsadeghi S.S.; Fareghi Alamdari R. Investigation on Thermal Analysis of Binary Zirconium/Oxidant Pyrotechnic Systems. Combust. Sci. Technol. 2008, 180: 2093-2102.
  • [8] Asadi, Z.; Nasrollahi, R.; Dusek, M.; Fejfarova, K.; Ranjkeshshorkaei, M.; Dehghani Firuzabadi F. Effect of the Substitutional Groups on the Electrochemistry, Kinetic of Thermal Decomposition and Kinetic of Substitution of Some Uranyl Schiff Base Complexes. J. Iran Chem. Soc. 2016, 13: 913-924.
  • [9] Kohsari, I.; Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Non-isothermal Kinetic Study of the Thermal Decomposition of Diaminoglyoxime and Diaminofurazan. J. Therm. Anal. Calorim. 2007, 89: 543-546.
  • [10] Shteinberg, A. Thermal Analysis of High-temperature Fast Reactions in Energetic Materials. J. Therm. Anal. Calorim. 2011, 106: 39-46.
  • [11] Shamsipur, M.; Pourmortazavi, S.M.; Hajimirsadeghi, S.S.; Atifeh, S.M. Effect of Functional Group on Thermal Stability of Cellulose Derivative Energetic Polymers. Fuel 2012, 95: 394-399.
  • [12] Xu, Z.; Zhu, J.; Liao, X.; Ni, H. Thermal Behavior of Poly(ethylene terephthalate)/SiO2/TiO2 Nano Composites Prepared via in situ Polymerization. J. Iran Chem. Soc. 2015, 12: 765-770.
  • [13] Laachachi, A.; Leroy, E.; Cochez, M.; Ferriol, M.; Lopez Cuesta, J.M. Use of Oxide Nanoparticles and Organoclays to Improve Thermal Stability and Fire Retardancy of Poly(methyl methacrylate). Polym. Degrad. Stab. 2005, 89: 344-352.
  • [14] Bikiaris, D. Can Nanoparticles Really Enhance Thermal Stability of Polymers? Part II: An Overview on Thermal Decomposition of Polycondensation Polymers. Thermochim. Acta 2011, 523: 25-45.
  • [15] Laachachi, A.; Cochez, M.; Leroy, E.; Gaudon, P.; Ferriol, M.; Lopez Cuesta, J. M. Effect of Al2O3 and TiO2 Nanoparticles and APP on Thermal Stability and Flame Retardance of PMMA. Polym. Adv. Technol. 2006, 17: 327-334.
  • [16] Pourmortazavi, S. M.; Hajimirsadeghi, S. S.; Kohsari, I.; Fareghi Alamdari, R.; Rahimi-Nasrabadi, M. Determination of the Optimal Conditions for Synthesis of Silver Oxalate Nanorods. Chem. Eng. Technol. 2008, 31: 1532-1535.
  • [17] Alexandre, M.; Dubois, P. Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R: Rep. 2000, 28: 1-63.
  • [18] Pourmortazavi, S.M.; Hajimirsadeghi, S.S.; Rahimi-Nasrabadi, M. Statistical Optimization of Condition for Synthesis Lead Sulfide Nanoparticles. Mater. Manuf. Process. 2009, 24: 524-528.
  • [19] Paul, D.R.; Robeson, L.M. Polymer Nanotechnology: Nanocomposites. Polymer 2008, 49: 3187-3204.
  • [20] Kumar, A. P.; Depan, D.; Tomer, N. S.; Singh R. P. Nanoscale Particles for Polymer Degradation and Stabilization-Trends and Future Perspectives. Prog. Polym. Sci. 2009, 34: 479-515.
  • [21] Le Bras, M.; Wilkie, C.; Bourbigot, S.; Duquesne, S. Fire Retardance of Polymers: The Use of Micro- and Nano-sized Mineral Fillers. Royal Society of Chemistry, Cambridge 2004; ISBN: 978-0-85404-149-7.
  • [22] Pafaff, K.; Erienbach, M.; Finenbrink, W. Insecticides. Patent US 2 375 382, 1945.
  • [23] Sathyaseelan, B.; Baskaran, I.; Sivakumar, K. Phase Transition Behavior of Nanocrystalline Al2O3 Powders. Soft Nanoscience Letters 2013, 3: 69-74.
  • [24] Mahender, C.; Murali, B.; Himabindu, V. Synthesis of Nano Phase Titanium Dioxide (TiO2) in Diffusion Flame Reactor and it Application in Photocatalytic Reaction. Int. J. Eng. Res. Appl. 2014, 4: 209-213.
  • [25] Hsieh, Y.-C.; Chou, Y.-C.; Lin, C.-P.; Hsieh, T.-F.; Shu, C.-M. Thermal Analysis of Multi-walled Carbon Nanotubes by Kissinger’s Corrected Kinetic Equation. Aerosol Air Qual. Res. 2010, 10: 212-218.
  • [26] Pourmortazavi, S. M.; Kohsari, I.; Teimouri, M. B.; Hajimirsadeghi, S. S. Thermal Behaviour Kinetic Study of Dihydroglyoxime and Dichloroglyoxime. Mater. Lett. 2007, 61: 4670-4673.
  • [27] Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29: 1702-1709.
  • [28] Shamsipur, M.; Pourmortazavi, S. M.; Fathollahi, M. Kinetic Parameters of Binary Iron/Oxidant Pyrolants. J. Energ. Mater. 2012, 30: 97-106.
  • [29] Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520: 1-19.
  • [30] Starink, M. J. The Determination of Activation Energy from Linear Heating Rate Experiments: A comparison of the Accuracy of Isoconversion Methods. Thermochim. Acta 2003, 404: 163-176.
  • [31] Criado, J. M.; Perez-Maqueda, L. A.; Sanchez-Jimenez, P. E. Dependence of the Preexponential Factor on Temperature. J. Therm. Anal. Calorim. 2005, 82: 671-675.
  • [32] Pourmortazavi, S. M.; Rahimi-Nasrabadi, M.; Kohsari, I.; Hajimirsadeghi, S.S. Non-isothermal Kinetic Studies on Thermal Decomposition of Energetic Materials. J. Therm. Anal. Calorim. 2012, 110: 857-863.
  • [33] Rodgers, R. N.; Janney, J. L.; Ebinger, M. H. Kinetic-isotope Effects in Thermal Explosions. Thermochim. Acta 1982, 59: 287-291.
  • [34] Humienik, M.O.; Mozejko, J. Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates. Thermochim. Acta 2000, 344: 73-79.
  • [35] Shamsipur, M.; Pourmortazavi, S.M.; Roushani, M.; Miran Beigi, A.A. Thermal Behavior and Non-isothermal Kinetic Studies on Titanium Hydride-fueled Binary Pyrotechnic Compositions. Combust. Sci. Technol. 2013, 185: 122-133.
  • [36] Krabbendam-LaHaye, E.L.M.; de Klerk, W.P.C.; Krämer, R.E. The Kinetic Behaviour and Thermal Stability of Commercially Available Explosives. J. Therm. Anal. Calorim. 2005, 80: 495-501.
  • [37] Gao, H.-X.; Zhao, F.-Q.; Hu, R.-Z.; Zhao, H.-A.; Zhang, H. Estimation of the Critical Temperature of Thermal Explosion for Azido-acetic-acid-2-(2-azidoacetoxy)-ethylester Using Non-isothermal DSC. J. Therm. Anal. Calorim. 2009, 95: 477-483.
  • [38] Sućeska, M. A Computer Program Based on Finite Difference Method for Studying Thermal Initiation of Explosives. J. Therm. Anal. Calorim. 2002, 68: 865-875.
  • [39] Shamsipur, M.; Pourmortazavi, S.M.; Miran Beigi, A.A.; Heydari, R.; Khatibi, M. Thermal Stability and Decomposition Kinetic Studies of Acyclovir and Zidovudine Drug Compounds. AAPS Pharm. Sci. Tech. 2013, 14: 287-293.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-285f724c-c9c3-463f-9e93-903e67eb110b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.