Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of work leading to the construction of a spatial hybrid model based on finite element (FE) and Monte Carlo (MC) methods allowing the computer simulation of physical phenomena accompanying the steel sample testing at temperatures that are characteristic for soft-reduction process. The proposed solution includes local density variations at the level of mechanical solution (the incompressibility condition was replaced with the condition of mass conservation), and at the same time simulates the grain growth in a comprehensive resistance heating process combined with a local remelting followed by free/controlled cooling of the sample tested. Simulation of grain growth in the entire computing domain would not be possible without the support of GPU processors. There was a 59-fold increase in the computing speed on the GPU compared to single-threaded computing on the CPU. The study was complemented by examples of experimental and computer simulation results, showing the correctness of the adopted model assumptions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
735--742
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wzory
Twórcy
autor
- AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] G. Sa, I. Mihaiela, I. Roderick, L. Guthrie, Progress of strip casting technology for steel - historical developments, ISIJ Int. 52 (12), 2109-2122 (2012).
- [2] M. Rosso, I. Peter, Continuous casting and rolling for the manufacturing of thin Al sheets, J. Ach. Mat. Manuf. Eng. 52 (2), 59-66 (2012).
- [3] V. Kumar, Thermo-mechanical simulation using gleeble system-advantages and limitations, J. Met. Mat. Sci. 58 (1), 81-88 (2016).
- [4] V. Kumar, C.S. Lin, J.A. Sekhar, Semi-solid deformation in multi-component nikel alumide, J. Mat. Sci. 28, 3581-3588 (1993).
- [5] C.S. Lin, J.A. Sekhar, Solidification morphology and semi-solid deformation in superalloy Rene 108-equiaxed solidified micro-structures, J. Mat. Sci. 29, 3637-3642 (1994).
- [6] J.Y. Lin, S. Sugiyama, J. Yanagimoto, Microstructural evolution and flow stress of semi-solid type 304 stainless steel, J. Mat. Proc. Tech. 161 (3), 396-406 (2005).
- [7] D.J. Seol, et al., Phase-field modelling of the thermo-mechanical properties of carbon steels, Acta Mat. 50 (9), 2259 2268 (2002).
- [8] H. Shimahara, et al., Investigation of flow behaviour and micro-structure on X210CrW12 steel in semi-solid state, Sol. St. Phen. 116-117, 189-192 (2006).
- [9] Z. Sun, Et Al., Numerical simulation of mechanical deformation of semi-solid material using a level-set based finite element method, Mod. Sim. Mat. Sci. Eng. 25 (6), 1-15 (2017).
- [10] J. Fonseca, et al., In situ study of granular micromechanics in semi-solid carbon steels, Acta Mat. 61 (11), 4169-4179 (2013).
- [11] A. Kalaki, M. Ketabchi, Predicting the rheological behavior of AISI D2 semi-solid steel by plastic instability approach, Am. J. Mat. Eng. Tech. 1 (3), 41-45 (2013).
- [12] J. Ghorpade, et al., GPU processing in CUDA architecture, Adv. Comp.: Int. J. 3 (1), 105-120 (2012).
- [13] M. Głowacki, Modelowanie matematyczne i symulacje komputerowe odkształcania metali - teoria i praktyka, 2016 AGH Kraków.
- [14] M. Hojny, Modeling steel deformation in the semi-solid state, 2018 Springer, Switzerland.
- [15] M. Hojny, M. Głowacki, P. Bała, P. Bednarczyk, W. Zalecki, A multiscale model of heating-remelting-cooling in the Gleeble 3800 thermomechanical simulator system, Arch. Metall. Mater. 64 (1), 401-412 (2019).
- [16] Q. An., et al., The bending, impact fracture behavior and characteristics of stainless steel clad plates with different rolling temperature, Arch. Metall. Mater. 66 (1), 229-239 (2021).
- [17] T. Dębiński, M. Hojny, T.T.T. Nguyen, D. Cedzidło, Parallel numerical calculation on GPU for the 3-dimensional model of grain growth in steel samples subjected to heating-remelting-cooling process in the Gleeble 3800 thermo-mechanical simulator (not published), (2021).
Uwagi
1. The work was realized as a part of fundamental research financed by the Ministry of Science and Higher Education, grant no. 16.16.110.663.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-285f0959-445e-407b-b84a-e27e3d80a01e