PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was the application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (BGNP). For the study, 59 sample plots were selected to refl ect all soil units (soil subtypes) in the studied area and take into account various forms of terrain. The content of organic carbon and total nitrogen, pH, hydrolytic acidity, the base cations and heavy metals content were determined in the soil samples. The geo-accumulation index (Igeo) was calculated, enabling estimation of the degree of soil pollution. The tested soils are characterized by strong contamination with heavy metals, especially with lead. The concentration of heavy metals in the surface horizons of the tested soils exceeds allowable concentration. The content of heavy metals was related to the content of soil organic matter, soil acidity and altitude. Higher altitudes are dominated by coniferous tree stands, which are accompanied by acidic, poorly decomposed organic horizons. Our study has confi rmed the impact of pollutants transported from industrial areas on the amount of heavy metals in soils of the BGNP.
Rocznik
Strony
69--79
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Faculty of Forestry, Department of Ecology and Silviculture, Poland
  • University of Agriculture in Krakow, Faculty of Forestry, Department of Ecology and Silviculture, Poland
  • University of Agriculture in Krakow, Faculty of Forestry, Department of Ecology and Silviculture, Poland
Bibliografia
  • 1. Barszcz, A. (2004). Heavy Metals And Macroelements In Rowan (Sorbus Aucuparia L.) Fruit In Different Forest Zones Of The Babia Góra Mt. Acta Scientiarum Polonorum. Silvarum Colendarum Ratio et Industria Lignaria: 3,2.
  • 2. Bayraktar, H. & Turalioglu, F. S. (2005). A Kriging-based approach for locating a sampling site - in the assessment of air quality. Stochastic Environmental Research and Risk Assessment, 19, 4, pp. 301-305.
  • 3. Bednarova, Z., Kuta, J., Kohut, L., Machat, J., Klanova, J., Holoubek, I. & Hilscherova, K. (2013). Spatial patterns and temporal changes of heavy metal distributions in river sediments in a region with multiple pollution sources. Journal of Soils and Sediments, 13, 7, pp. 1257-1269.
  • 4. Berthelsen, B.O., Steinnes, E., Abrahamsen, G. & Stuanes, A.O. (1994). Mobility of heavy metals in pine forest soils as influenced by experimental acidification. Water, Air, and Soil Pollution, 73, 1, pp. 29-48.
  • 5. Błońska, E., Lasota, J., Szuszkiewicz, M., Łukasik, A. & Klamerus-Iwan, A. (2016). Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environmental Earth Sciences, 75, 16, 1205.
  • 6. Bolan, N., Adriano, D. & Mahimairaja, S. (2004). Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Critical Reviews in Environmental Science and Technology, 34, 3, pp. 291-338.
  • 7. Chen, Y., Liu, Y., Liu, Y., Lin, A., Kong, X., Liu, D. & Wang, D. (2012). Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: A case study in the Le’an River floodplain, China. International Journal of Environmental Research and Public Health, 9, 5, pp. 1874-1886.
  • 8. Chrzan, A. (2013). Zawartość wybranych metali ciężkich w glebie i korze sosny. Proceedings of ECOpole. (in Polish)
  • 9. Cicmanec, J.L. (1996). Comparison of four human studies of perinatal exposure to methylmercury for use in risk assessment. Toxicology, 111, 1-3: pp. 157-162.
  • 10. Dore, A.J., Choularton, T.W., Fowler, D. & Storton‐West, R. (1990). Field measurements of wet deposition in an extended region of complex topography. Quarterly Journal of the Royal Meteorological Society, 116, 495, pp. 1193-1212.
  • 11. Emery, X. (2005). Simple and ordinary multigaussian kriging for estimating recoverable reserves. Mathematical Geology, 37, 3, pp. 295-319.
  • 12. The guide of forest management, 2012. Ed. M. Haze, Clip, Warszawa, Poland.
  • 13. Fowler, D., Cape, J.N., Leith, I.D., Choularton, T.W., Gay, M.J. & Jones, A. (1988). The influence of altitude on rainfall composition at Great Dun Fell. Atmospheric Environment (1967), 22, 7, pp. 1355-1362.
  • 14. Sulikowska, A., Ciaranek, D. & Franczak, P. (2017). Climate. (in Polish)
  • 15. Gäbler, H.E., (1997). Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. Journal of Geochemical Exploration, 58, 2-3, pp. 185-194.
  • 16. Gerritse, R.G. & Van Driel, W. (1984). The relationship between adsorption of trace metals, organic matter, and pH in temperate soils. Journal of Environmental Quality, 13, 2, pp. 197-204.
  • 17. Greszta, J. (1987). Influence of industrial pollution of air on forests. SGGW-AR, Warszawa. (in Polish)
  • 18. Haase, D., Schneider, B. & Neumeister, H. (2000). Processes in fluvisols caused by artificial flooding in forest ecosystems. Consequences of human impact on floodplain wetlands in central Germany. GEOOKO-BENSHEIM-, 21, 3-4, pp. 185-198.
  • 19. Hess, M.T. (1965). Climatic level in the Polish Western Carpathians. Jagiellonian University. (in Polish)
  • 20. Hill, T.J., Skeffington, R. A. & Whitehead, P. G. (2002). Recovery from acidification in the Tillingbourne catchment, southern England: Catchment description and preliminary results. Science of the total environment, 282: pp. 81-97.
  • 21. Holeksa, J. & Szwagrzyk, J. (2002). Vegetation Worlds of Babia Góra, In: D. Ptaszycka-Jackowska (ed.), Zawoja, pp. 41-95. (in Polish)
  • 22. Hvitved-Jacobsen, T., Johansen, N.B. & Yousef, Y.A. (1994). Treatment systems for urban and highway run-off in Denmark. Science of the Total Environment, 146, pp. 499-506.
  • 23. IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106: 192.
  • 24. Kabata-Pendias, A. & Pendias, H. (1993). Biogeochemistry of trace elements. PWN Scientific Publisher.
  • 25. Kabata-Pendias, A. (1995). Heavy metals in soils - issues in Central and Eastern Europe. In: Heavy metals in the environment, Hamburg, 1, pp. 20-27.
  • 26. Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC press.
  • 27. Konecka-Betley, K., Czępińska-Kamińska, D. & Janowska, E. (1999). The alteration trends in the soil cover of Kampinos National Park (1991-1994). Roczniki Gleboznawcze, 50, pp. 5-29.
  • 28. Konieczyński, J. (1982). The efficiency of electrostatic precipitators and the emission of trace metals in the flue gas of coal-fired power plants. Air protection, 1, 3, pp. 7-14.
  • 29. Kowalska, J., Kajdas, B. & Zaleski, T. (2017). Variability of morphological, physical and chemical properties of soils derived from carbonate-rich parent material in the Pieniny Mountains (south Poland). Soil Science Annual, 68, 1, pp. 27-38.
  • 30. Królikowski, A., Garbarczyk, K., Gwoździej-Mazur, J. & Butarewicz, A. (2005). Sludge created in rainwater system facilities. Monograph of the Environmental Engineering Committee PAN, 35. (in Polish)
  • 31. Lark, R. M. (2012). Towards soil geostatistics. Spatial Statistics, 1: pp. 92-99.
  • 32. Lasat, M.M. (1999). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2, 1, 5.
  • 33. Liu, R., Men, C., Liu, Y., Yu, W., Xu, F. & Shen, Z. (2016). Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment. Marine pollution bulletin, 110, 1, pp. 564-571.
  • 34. Lv, J. (2019). Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental pollution, 244, pp. 72-83.
  • 35. Matheron, G. (1971). The theory of regionalised variables and its applications. Les Cahiers du Centre de Morphologie Mathématique, 5, pp. 212.
  • 36. Matini, L., Ongoka, P.R. & Tathy, J.P. (2011). Heavy metals in soil on spoil heap of an abandoned lead ore treatment plant, SE Congo-Brazzaville. African Journal of Environmental Science and Technology, 5, 2, pp. 89-97.
  • 37. Matuszkiewicz, J.M. (2008). Potential natural vegetation of Poland. IGiPZ PAN, Warszawa. (in Polish)
  • 38. Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T. & Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168: pp. 839-850.
  • 39. Mench, M., Lepp, N., Bert, V., Schwitzguébel, J.P., Gawronski, S.W., Schröder, P. & Vangronsveld, J. (2010). Successes and limitations of phytotechnologies at fi eld scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10, 6, pp. 1039-1070.
  • 40. Miechówka, A., Niemyska-Łukaszuk, J., Zaleski, T. & Mazurek, R. (2004). Soils of Babiogórski National Park. In: Wołoszyn, B.W., Jaworski, A. & Szwagrzyk, J. (eds) Babiogórski National Park. Natural Monography. Babia Góra National Park, Zawoja-Kraków, pp. 193-207 (in Polish).
  • 41. Młocek-Płóciniak, A. (2011). Effect of heavy metals on microorganisms and soil enzymatic activity. Roczniki Gleboznawcze, 62, 4, pp. 211-220. (in Polish)
  • 42. Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R. & Beramendi-Orosco, L.E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101, 3, pp. 218-224.
  • 43. Mühlbachová, G., Simon, T. & Pechová, M. (2005). The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant Soil Environ, 51, 1, pp. 26-33.
  • 44. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, pp. 108-118.
  • 45. Nabulo, G., Oryem-Origa, H. & Diamond, M. (2006). Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research, 101, 1, pp. 42-52.
  • 46. Niemyska-Łukaszuk J., Miechówka A. & Mazurek R. (2010). Characteristics of the taxonomic units of the Babia Góra National Park soils (within the boundaries of 1996). In: Lasota J. (ed.) Soil Operat of Babia Góra National Park, Taxus, Warsaw: pp. 5-11. (in Polish)
  • 47. Obrębska-Starkel, B. (2004). The climate of the Babia Góra Massie. In: Wołoszyn, B.W. (Ed) Babiogórski National Park: Nature Monograph, Krakow: Publishing House and Printing House of the Society of Slovaks in Poland: pp. 137-151. (in Polish)
  • 48. Ostrowska, A., Porębska, G., Borzyszkowski, J., Król, H. & Gawliński, S. (2001). Properties of forest soils and methods of their determination. Institute of Environmental Protection, Warsaw: p. 108. (in Polish)
  • 49. Parker, G.G. (1990). Evaluation of dry deposition, pollutant damage, and forest health with throughfall studies. In: Mechanisms of forest response to acidic deposition (pp. 10-61). Springer, New York, NY.
  • 50. Parrish, D.D., Law, K.S., Staehelin, J., Derwent, R., Cooper, O.R., Tanimoto, H. & Chan, E. (2012). Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmospheric Chemistry and Physics, 12, 23, pp. 11485-11504.
  • 51. Rademacher, P. (2003). Atmospheric heavy metals and forest ecosystems (No. 2003/12). Work Report of the Institute for World Forestry.
  • 52. Regulation of the Minister of the Environment on the manner of conducting the assessment of the pollution of the earth’s surface. (2016). Journal of Laws, item 1395.
  • 53. Reichardt, K. & Timm, L.C. (2020). How Soil, Plant, and Atmosphere Properties Vary in Space and Time in the SPAS: An Approach to Geostatistics. Soil, Plant and Atmosphere pp. 331-366, Springer, Cham.
  • 54. Richmond, A. (2003). Financially efficient ore selections incorporating grade uncertainty. Mathematical Geology, 35, 2, pp. 195-215.
  • 55. Rivera, M.B., Giráldez, M.I. & Fernández-Caliani, J.C. (2016). Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk?. Science of The Total Environment, 560: pp. 254-265.
  • 56. Rosik-Dulewska, C., Karwaczynska, U. & Ciesielczuk, T. (2007). The impact of a municipal landfill on the concentration of heavy metals in genetic soil horizons. Management of Pollutant Emission from Landfills and Sludge: 117.
  • 57. Rubner, K. (1953). Die pflanzengeographischen Grundlagen des Waldbaus Radebeul. Berlin: Neumann.
  • 58. Sauvé, S., Hendershot, W. & Allen, H.E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science & Technology, 34, 7, pp. 1125-1131.
  • 59. Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T. & Isaksen, I.S.A. (2006). Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, pp. 5225-5246.
  • 60. Scokart, P.O., Meeus-Verdinne, K. & De Borger, R. (1983). Mobility of heavy metals in polluted soils near zinc smelters. Water, Air, & Soil Pollution, 20, 4, pp. 451-463.
  • 61. Skwaryło-Bednarz, B. (2006). Total contents of selected heavy metals in forest soils of Roztocze National Park (RPN). Acta Agrophysica, 8, 3, pp. 727-733.
  • 62. Staszewski, T., Kubiesa, P. & Malawska, M. (2011). The use of trace substances to assess environmental hazards in the Bieszczady National Park, Roczniki Bieszczadzkie, 19: pp. 273-284. (in Polish)
  • 63. Stein, M.L. (2012). Interpolation of spatial data: some theory for kriging. Springer Science & Business Media.
  • 64. Strzyszcz, Z. (1999). Heavy metal contamination in mountain soils of Poland as a result of anthropogenic pressure. Biology Bulletin, 26, 6, pp. 593-605.
  • 65. Szponar, A., Shuber, P. & Bilińska, E. (2009). Heavy metals in soils and in the needles of spruce in ecotope of the subalpine forests in Czarnohora (Eastern Carpathians). The Problems of Landscape Ecology, 23, pp. 191-201.
  • 66. Šajn, R., Aliu, M., Stafilov, T., & Alijagić, J. (2013). Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. Journal of Geochemical Exploration, 134, pp. 1-16.
  • 67. Tomaškin, J., Tomaškinová, J., Kmeťová, J. & Drimal, M. (2013). The concentration of heavy metals in grassland ecosystems of the central Slovakia national parks. Carpathian Journal of Earth and Environmental Sciences, 8, 4, pp. 35-40.
  • 68. Tonkin, M.J. & Larson, S.P. (2002). Kriging water levels with a regional-linear and point-logarithmic drift. Ground Water, 40, 2, 185.
  • 69. Ulrich, B. & Matzner, E. (1986). Anthropogenic and natural acidification in terrestrial ecosystems. Experientia, 42, 4, pp. 344-350.
  • 70. Wardas, M., Budek, L. & Rybicka, E. H. (1996). Variability of heavy metals content in bottom sediments of the Wilga River, a tributary of the Vistula River (Krakow area, Poland). Applied Geochemistry, 11, 1-2, pp. 197-202.
  • 71. Wei, B. & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical journal, 94, 2, pp. 99-107.
  • 72. Xia, F., Hu, B., Shao, S., Xu, D., Zhou, Y., Zhou, Y., ... & Shi, Z. (2019). Improvement of Spatial Modeling of Cr, Pb, Cd, As and Ni in Soil Based on Portable X-ray Fluorescence (PXRF) and Geostatistics: A Case Study in East China. International Journal of Environmental Research and Public Health, 16, 15, p. 2694.
  • 73. Yan, X., Zhang, F., Zeng, C., Zhang, M., Devkota, L.P. & Yao, T. (2012). Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. International Journal of Environmental Research and Public Health, 9, 9, pp. 3209-3226.
  • 74. Yesilonis, I.D., Pouyat, R.V. & Neerchal, N.K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Pollution, 156, 3, pp. 723-731.
  • 75. Zajaczkowski, J., (2002). Norway Spruce (Picea abies) in ecosystem forestry in the Kashubian Lake District (in Polish). Sylwan, 146, 10, pp. 25-30.
  • 76. Zechmeister, H. G. (1995). Correlation between altitude and heavy metal deposition in the Alps. Environmental Ppollution, 89, 1, pp. 73-80.
  • 77. Zhang, F., Yan, X., Zeng, C., Zhang, M., Shrestha, S., Devkota, L. P. & Yao, T. (2012). Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. International Journal of Environmental Research and Public Health, 9, 5, pp. 1715-1731.
  • 78. Zwozdziak, J., Zwozdziak, A., Kmiec, G. & Kacperczyk, K. (1995). Some observations of pollutant fluxes over the Sudeten, south-western Poland. Water, Air, and Soil Pollution, 85, 4, pp. 2009-2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2857cbd3-e313-4fd1-8201-99e5c777b36a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.