PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Confronting Nationally Determined Contributions to IPPC's +2 °C Carbon Budgets through the Analyses of France and Wallonia Climate Policies

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method to objectively compare and link climate policies, expressed in CO2eq, to IPCC's carbon budgets, expressed in CO2-only, is exhibited, as countries often omit to so in their Nationally Determined Contributions. Furthermore, they are usually pledging only towards territorial targets despite the fact that imported emissions are now greater in occidental countries, thus relying on the countries they are importing from to achieve their own territorial emissions reductions. This paper demonstrates that the +1.5 °C carbon budgets of France and Wallonia will be exceeded even with territorial emissions only. For the +2 °C carbon budget to be secured, France should reduce its imported emissions at least to the same extent as their projected territorial emissions. For Wallonia, this is even emphasized since it has no margin in the +2 °C carbon budget with only the territorial emissions. It should therefore legally adopt more ambitious territorial and imported emissions reduction pathways with short-term commitments.
Rocznik
Strony
214--225
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Thermodynamics Laboratory, University of Liège; Allée de la découverte 17, 4000 Liège, Belgium
Bibliografia
  • 1. Allen, M.R. et al. 2018. A solution to the misrepresentations of CO2-equivalent emissions of shortlived climate pollutants under ambitious mitigation. npj Climate and Atmospheric Science, 1(1).
  • 2. AwAC. 2018. Avis du Comité des experts relatif à la proposition de budgets d’émissions pour les périodes 2023-2027 et 2028-2032. Comité des experts de l’AwAC.
  • 3. Blujdea, V.N., Viñas, R.A., Federici, S., Grassi, G. 2015. The EU greenhouse gas inventory for the LULUCF sector: I. Overview and comparative analysis of methods used by EU member states. Carbon Management, 6(5–6).
  • 4. Brännlund, R., Ghalwash, T., Nordström, J. 2007. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Economics, 29(1).
  • 5. Bureau du Plan. 2020. Perspectives démographiques 2019–2070: Population et ménages.
  • 6. CITEPA. 2022. Rapport National d’Inventaire pour la France au titre de la Convention cadre des Nations Unies sur les Changements Climatiques et du Protocole de Kyoto. Centre Interprofessionnel Technique d’Etudes de la Pollution Atmosphérique, Ministère de la Transition Ecologique et Solidaire.
  • 7. Ehlert, D., Zickfeld, K. 2017. What determines the warming commitment after cessation of CO2 emissions?. Environmental Research Letters, 12(1).
  • 8. Feng, K., Hubacek, K., Sun, L., Liu, Z. 2014. Consumption-based CO2 accounting of China’s megacities: The case of Beijing, Tianjin, Shanghai and Chongqing. Ecological Indicators, 47.
  • 9. Gernaat, D.E. et al. 2015. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 33.
  • 10. Gignac, R., Matthews, H.D. 2015. Allocating a 2°C cumulative carbon budget to countries. Environmental Research Letters, 10(7).
  • 11. Gouvernement Wallon. 2019a. Contribution de la Wallonie au Plan National Energie Climat 2030 (PNEC 2030).
  • 12. Gouvernement Wallon. 2019b. Stratégie à long terme pour la Wallonie (SLT 2050): «Vers une Wallonie climatiquement neutre en 2050».
  • 13. Gouvernement Wallon, 2023. Plan Air Climat Energie (PACE) 2030, s.l.: s.n.
  • 14. HAC. 2021a. High Ambition Coalition COP 26 Leaders’ Statement, 2nd November 2021, Glasgow: High Ambition Coalition.
  • 15. HAC. 2021b. Energy growing behind ambitious Glasgow Package, 8th November 2021, Glasgow: High Ambition Coalition.
  • 16. Hambÿe, C., Hertveldt, B., Michel, B. 2018. Does consistency with detailed national data matter for calculating carbon footprints with global multi-regional input–output tables? A comparative analysis for Belgium based on a structural decomposition. Economic Structures, 7(11).
  • 17. HCC. 2020. Maîtriser l’empreinte carbone de la France - Réponse à la saisine du gouvernement. Haut Conseil pour le Climat.
  • 18. Hertwich, E., Peters, G. 2009. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environmental Science & Technology, 43(16).
  • 19. IPCC WGI. 2013. Climate Change: The Physical Science Basis. IPCC - Working Group I Technical Support Unit.
  • 20. IPCC WGI. 2018. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels. IPCC - Working Group I Technical Support Unit.
  • 21. IPCC WGI. 2021. Climate Change 2021: The Physical Science Basis - Summary for Policymakers. IPCC - Working Group I Technical Support Unit. https://doi.org/10.1017/9781009157896.001
  • 22. IPCC WGIII. 2022. Climate Change 2022: Mitigation of Climate Change - Summary for Policymakers. IPCC - Working Group III Technical Support Unit. https://doi.org/10.1017/9781009157926.001
  • 23. Iweps. 2022. Emissions de gaz à effet de serre (GES) - Fiche A006-REDUC.GES - dernières données régionales disponibles au 01/06/2022.
  • 24. Klemeš, J.-J., Liu, X., Varbanov, P.-S. 2017. Virtual greenhouse gas and water footprints reduction: emissions, effluents and water flows embodied in international trade. Chemical Engineering Transactions, 56.
  • 25. Lamb, W. et al. 2020. Discourses of climate delay. Global Sustainability, 3.
  • 26. Lombardi, M., Laiola, E., Tricase, C., Rana, R. 2017. Assessing the urban carbon footprint: An overview. Environmental Impact Assessment Review, 66.
  • 27. Lowe, J.A., Bernie, D. 2018. The impact of Earth system feedbacks on carbon budgetsand climate response. Philosophical Transactions of the Royal Society A, 376.
  • 28. Maris, G., Flouros, F. 2021. The Green Deal, National Energy and Climate Plans in Europe: Member States’ Compliance and Strategies. Administrative Sciences, 11(3).
  • 29. McLaren, D. 2012. A comparative global assessment of potential negative emissions technologies. Process Safety and Environmental Protection, 90(6).
  • 30. McQueen, N. et al. 2021. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Progress in Energy, 3(3).
  • 31. Ministère de la transition écologique, 2020a. Stratégie nationale bas-carbone révisée - NOR: TRER2010109P.
  • 32. Ministère de la transition écologique, 2020b. Stratégie nationale bas-carbone - DICOM-DGEC/PLA/19092.
  • 33. Mohan, Y., Ranjith, P., Tharumarajah, A. 2010. Iron ore and steel production trends and material flows in the world: Is this really sustainable?. Resources, Conservation and Recycling, 54(12).
  • 34. Moser, S.C. 2009. Communicating climate change: history, challenges, process and future directions. WIREs Climate Change, 1(1).
  • 35. Nataly Echevarria Huaman, R., Xiu Jun, T. 2014. Energy related CO2 emissions and the progress on CCS projects: A review. Renewable and Sustainable Energy Reviews, 31.
  • 36. Pandey, D., Agrawal, M., Pandey, J.S. 2011. Carbon footprint: current methods of estimation. Environmental Monitoring and Assessment, 178(1).
  • 37. Paulus, N., Davila, C., Lemort, V. 2022. Field-test economic and ecological performance of Proton Exchange Membrane Fuel Cells (PEMFC) used in micro-combined heat and power residential applications (micro-CHP). Proceedings of the 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.
  • 38. Petrova, M.A. 2013. NIMBYism revisited: public acceptance of wind energy in the United States. WIREs Climate Change, 4(6).
  • 39. PRB. 2020. 2020 World Population Data sheet - Booklet.
  • 40. Rogelj, J. et al. 2019. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 571(7765).
  • 41. Rogelj, J. et al. 2015. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environmental Research Letters, 10(7).
  • 42. Semenza, J.C. et al., 2008. Public perception of climate change: Voluntary mitigation and barriers to behavior change. American Journal of Preventive Medicine, 35(5).
  • 43. Smith, S. et al. 2012. Equivalence of greenhousegas emissions for peak temperature limits. Nature Climate Change, 2(7).
  • 44. SPW. 2014. 20 FEVRIER 2014. - Décret «Climat», Moniteur belge du 10-03-2014, p. 20402: Service Public de Wallonie.
  • 45. Steffen, W. et al. 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33).
  • 46. Towa, E. et al., 2022. Toward the development of subnational hybrid input-output tables in a multiregional framework. Journal of Industrial Ecology, 26(1).
  • 47. United Nations. 2015. FCCC/CP/2015/L.9/Rev.1 - Adoption of the Paris Agreement. Paris.
  • 48. van Nimwegen, N., van der Erf, R. 2017. Europe at the Crossroads: Demographic Challenges and International Migration. Journal of Ethnic and Migration Studies, 36(9).
  • 49. Vandevyvere, H., Nevens, F. 2015. Lost in Transition or Geared for the S-Curve? An Analysis of Flemish Transition Trajectories with a Focus on Energy Use and Buildings. Sustainability, 7(3).
  • 50. Yamano, N., Guilhoto, J. 2020. CO2 emissions embodied in international trade and domestic final demand: Methodology and results using the OECD Inter-Country Input-Output Database. OECD Science, Technology and Industry Working Papers, 11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-285254f1-1398-4f80-8e78-1b3cd55d4193
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.