PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Klein-Nishina formula and Monte Carlo method for evaluating the gamma attenuation properties of Zn, Ba, Te and Bi elements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the Klein–Nishina (K–N) approach was used to evaluate the electronic, atomic, and energy-transfer cross sections of four elements, namely, zinc (Zn), tellurium (Te), barium (Ba), and bismuth (Bi), for different photon energies (0.662 MeV, 0.835 MeV, 1.170 MeV, 1.330 MeV, and 1.600 MeV). The obtained results were compared with the Monte Carlo method (Geant4 simulation) in terms of mass attenuation and mass energy-transfer coefficients. The results show that the K–N approach and Geant4 simulations are in good agreement for the entire energy range considered. As the photon energy increased from 0.662 MeV to 1.600 MeV, the values of the energy-transfer cross sections decreased from 81.135 cm2 to 69.184 cm2 in the case of Bi, from 50.832 cm2 to 43.344 cm2 for Te, from 54.742 cm2 to 46.678 cm2 for Ba, and from 29.326 cm2 to 25.006 cm2 for Zn. The obtained results and the detailed information of the attenuation properties for the studied elements would be helpful in developing a new generation of shielding materials against gamma rays.
Słowa kluczowe
Wydawca
Rocznik
Strony
219--226
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Physics, Sakarya University, Sakarya, Turkey
  • Department of Physics, College of Science, Jouf University, P.O.Box:2014, Sakaka, Saudi Arabia
autor
  • Department of Chemistry, College of Sciences, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Department of Physics, School of Physical Sciences, Federal University of Technology, Minna, Nigeria
  • Department of Physics, College of Science, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
autor
  • Department of Physics, Ubon Ratchathani University, Ubon Ratchathani, Thailand
  • Department of Physics, Sakarya University, Sakarya, Turkey
Bibliografia
  • [1] Ogundare FO, Olarinoye IO, Obed RI. Estimation of patients’ organ doses and conceptus doses from selected X-ray examinations in two Nigeria X-ray centers. Radiat Prot Dosimetry. 2008;132(4):395–2.
  • [2] Institute of Medicine (US) Committee for Review and Evaluation of the Medical Use Program of the Nuclear Regulatory Commission; Gottfried KLD, Penn G, editors. Radiation in medicine: A need for regulatory reform. Washington (DC): National Academies Press (US); 1996. 2, Clinical Applications of Ionizing Radiation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK232715/
  • [3] Rahman ROA, Hung YT. Application of ionizing radiation in wastewater treatment: An overview.Water. 2020;12(1):19.
  • [4] Chmielewski A. Application of ionizing radiation to environment protection. Nukleonika. 2005;50:17–4.
  • [5] Olarinoye IO, Ogundare FO. Optical and microstructural properties of neutron irradiated RF-sputtered amorphous alumina thin films. Optik. 2017;134:66–77.
  • [6] Ogundare FO, Olarinoye IO. He+ induced changes in the surface structure and optical properties of RF-sputtered amorphous alumina thin films. J Non Crystalline Solids. 2016;432:292–9.
  • [7] Sulieman A, Adam H, Elnour A, Tamam N, Alhaili A, Alkhorayef M, et al. Patient radiation dose reduction using a commercial iterative reconstruction technique package. Radiat Phys Chem. 2021;178:108996.
  • [8] Valentin J. Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Ann ICRP. 2000;30(2):7–67.
  • [9] Cousins C, Miller DL, Bernardi G, Rehani MM, Schofield P, Vañó E, et al. ICRP PUBLICATION 120: Radiological protection in cardiology. Ann ICRP. 2013;42(1):1–125.
  • [10] Attix FH. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons; 2008.
  • [11] Thiele KT, Alexander RW, Maqbool M. Characterization of 83Bi209, 74W184, 48Cd112, 30Zn65, 28Ni59 and 26Fe56 using Modified Klein-Nishina formula, for radiation shielding and dosimetry. Radiat Phys Chem. 2021;179:109264.
  • [12] Al-Buriahi MS, El-Agawany FI, Sriwunkum C, Akyıldırım H, Arslan H, Tonguc BT,et al. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys B 2020;581:411946.
  • [13] Al-Buriahi MS, Gaikwad DK, Hegazy HH, Sriwunkum C, Algarni H. Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: Role of Er2O3. J Mater Sci. 2021;32(7):9440–51.
  • [14] Alalawi A, Al-Buriahi MS, Sayyed MI, Akyildirim H, Arslan H, Zaid MH, et al. Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceram Int. 2020;46(11):17300–6.
  • [15] TekinHO, Issa SA, Mahmoud KAA, El-Agawany FI, Rammah YS, Susoy G, et al. Nuclear radiation shielding competences of barium-reinforced borosilicate glasses. Emerg Mater Res. 2020;9(4):1131–44.
  • [16] Boukhris I, Kebaili I, Al-Buriahi MS, Alalawi A, Abouhaswa AS, Tonguc B. Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram Int. 2020;46(15):24435–42.
  • [17] Kebaili I, Boukhris I, Al-Buriahi MS, Alalawi A, Sayyed MI. Ge-Se-Sb-Ag chalcogenide glasses for nuclear radiation shielding applications. Ceram Int. 2021;47(1):1303–9.
  • [18] Boukhris I, Kebaili I, Al-Buriahi MS, Sriwunkum C, Sayyed MI. Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodiumtungsten glasses. Appl Phys A. 2020;126(10):1–0.
  • [19] Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, et al. GEANT4–a simulation toolkit. Nucl Instrum. 2003;506(3):250–3.
  • [20] Lakshminarayana G, Dong MG, Al-Buriahi MS, Kumar A, Lee DE, Yoon J, et al. B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: A comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects. Appl Phys A. 2020;126(3):1–18.
  • [21] Creagh DC, Hubbell JH. Problems associated with the measurement of X-ray attenuation coefficients. I. Silicon. Report of the International Union of Crystallography X-ray Attenuation Project. Acta Cryst. 1987;43(1):102–12.
  • [22] Al-BuriahiMS, Arslan H, Tonguç BT. Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data. Indian J Pure Appl Phys. 2019;57(6):433–7.
  • [23] Al-Hadeethi Y, Al-Buriahi MS, Sayyed MI. Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram Int. 2020;46(4):5306–14.
  • [24] Alenezi M, Stinson K, Maqbool M, Bolus N. Klein–Nishina electronic cross-section, Compton cross sections, and buildup factor of wax for radiation shielding and protection. J Radiol Prot. 2018;38(1):372.
  • [25] Alexander RW, Thiele KT, Maqbool M. Electronic cross-sections and Compton attenuation and transfer coefficients of 82Pb208, 29Cu64, 27Co59, 20Ca40 and 13Al27 for applications in radiation shielding and dose. Phys Scripta. 2020;95(8):085006.
  • [26] Thiele KT, Alexander RW, Maqbool M. Characterization of 83Bi209, 74W184, 48Cd112, 30Zn65, 28Ni59 and 26Fe56 using Modified Klein-Nishina formula, for radiation shielding and dosimetry. Radiat Phys Chem. 2021;179:109264.
  • [27] Al-Buriahi MS, Singh VP. Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J Aust Ceram Soc. 2020;56(3):1127–33.
  • [28] Al-Buriahi MS, Mann KS. Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater Res Express. 2019;6(10):105206.
  • [29] Alzahrani JS, Alothman MA, Eke C, Al-Ghamdi H, Aloraini DA, Al-Buriahi MS. Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput Mater Sci. 2021;196:110566.
  • [30] Al-Buriahi MS, Olarinoye IO, Alomairy S, Kebaili I, Kaya R, Arslan H, et al. Dense and environment friendly bismuth barium telluroborate glasses for nuclear protection applications. Prog Nucl Energy. 2021;137:103763.
  • [31] Sekhar KC, Hameed A, Narsimlu N, Alzahrani JS, Alothman MA, Olarinoye IO, et al. Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: An experimental and in silico study. Optical Mater. 2021;117:111173.
  • [32] Olarinoye IO, Alomairy S, Sriwunkum C, Hegazy HH, Al-Buriahi MS. Effects of TeO2 and B2O3 on photon, neutron, and charged particle transmission properties of Bi2O3-BaO-LiF glass system. J Aust Ceram Soc. 2021:1–2.
  • [33] Al-Buriahi MS, Alzahrani JS, Olarinoye IO, Mutuwong C, Elsaeedy HI, Alomairy S, et al. Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate glasses: A new nontoxic candidate for shielding applications. J Mater Sci. 2021;32(11):15080–94.
  • [34] Al-Buriahi MS, Alomairy S, Mutuwong C. Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: An in silico study. J Aust Ceram Soc. 2021:1–9.
  • [35] Al-Buriahi M S, Tonguc BT. Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat Phys Chem. 2019:108507.
  • [36] Al-Buriahi MS, Eke C, Alomairy S, Mutuwong C, Sfina N. Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses. J Mater Sci. 2021:1–1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2849d292-8723-4206-bc5c-aacc2e088b4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.