PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-Dimensional Freehand Ultrasound Strain Elastography Based on the Assessment of Endogenous Motion: Phantom Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present the results of the pilot experiments demonstrating proof of concept of three-dimensional strain elastography, based on freehand ultrasound for the assessment of strain induced by endogenous motion. The technique was tested by inducing pulsatility in an agar-based tissue mimicking phantom with inclusions having different stiffness and scanning the 1D array with an electromagnetic position sensor. The proof of concept is explored with a defined physical phantom and the adopted algorithm for strain analysis. The agar-based phantom was manufactured with two cylindrical inclusions having different stiffness (7 kPa and 75 kPa in comparison to the background 25 kPa) and scattering properties. The internal strain in the phantom was introduced by mimicking a pulsating artery. The agar mixture displacements were estimated by using the GLUE algorithm. The 3D isosurfaces of inclusion from rendered volumes obtained from the B-mode image set and strain elastograms were reconstructed and superimposed for a quantitative comparison. The correspondence between the B-mode image-based inclusion volume and the strain elastography-based volume was good (the Jaccard similarity coefficient in the range 0.64–0.74). The obtained results confirm the 3D freehand endogenous motion-based elastography as a feasible technique. The visualization of the inclusions was successful. However, quantitative measurements showed that the accuracy of the method in volumetric measurements is limited.
Rocznik
Strony
219--229
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • TELEMED, Ultrasound Medical Systems Vilnius, Lithuania
  • Biomedical Engineering Institute, Kaunas University of Technology Kaunas, Lithuania
  • Biomedical Engineering Institute, Kaunas University of Technology Kaunas, Lithuania
Bibliografia
  • 1. Abeysekera J., Rohling R., Salcudean S. (2015), Vibro-elastography: Absolute elasticity from motorized 3D ultrasound measurements of harmonic motion vectors, [in:] 2015 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, doi: 10.1109/ULTSYM.2015.0201.
  • 2. Bae U., Dighe M., Shamdasani V., Minoshima S., Dubinsky T., Kim Y. (2006), 6F-6 thyroid elastography using carotid artery pulsation: A feasibility study, [in:] 2006 IEEE Ultrasonics Symposium, pp. 614-617, doi: 10.1109/ULTSYM.2006.160.
  • 3. Barr R.G. et al. (2017), WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: Part 5. Prostate, Ultrasound in Medicine and Biology, 43(1): 27-48, doi: 10.1016/j.ultrasmedbio.2016.06.020.
  • 4. Bercoff J., Sinkus R., Tanter M., Fink M. (2004), 3D ultrasound-based dynamic and transient elastography: First in vitro results, [in:] IEEE International Ultrasonics Symposium, 1: 28-31, doi: 10.1109/ULTSYM.2004.1417660.
  • 5. Burlew M.M., Madsen E.L., Zagzebski J.A., Banjavic R.A., Sum S.W. (1980), A new ultrasound tissue-equivalent material, Radiology, 134(2): 517-520, doi: 10.1148/radiology.134.2.7352242.
  • 6. Chen Z., Chen Y., Huang Q. (2016), Development of a wireless and near real-time 3D ultrasound strain imaging system, IEEE Transactions on Biomedical Circuits and Systems, 10(2): 394-403, doi: 10.1109/TBCAS.2015.2420117.
  • 7. Cosgrove D. et al. (2017), WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: Part 4. Thyroid, Ultrasound in Medicine & Biology, 43(1): 4-26, doi: 10.1016/j.ultrasmedbio.2016.06.022.
  • 8. Dickinson R.J., Hill C.R. (1982), Measurement of soft tissue motion using correlation between A-scans, Ultrasound in Medicine & Biology, 8(3): 263-271, doi: 10.1016/0301-5629(82)90032-1.
  • 9. Dietrich C.F. et al. (2017), Strain elastography – How to do it?, Ultrasound International Open, 3(4): E137-E149, doi: 10.1055/s-0043-119412.
  • 10. Gelman S. et al. (2020), Endogenous motion of liver correlates to the severity of portal hypertension, World Journal of Gastroenterology, 26(38): 5836-5848, doi: 10.3748/wjg.v26.i38.5836.
  • 11. Gilja O.H., Hausken T., Olafsson S., Matre K., Ødegaard S. (1998), In vitro evaluation of three-dimensional ultrasonography based on magnetic scan head tracking, Ultrasound in Medicine & Biology, 24(8): 1161-1167, doi: 10.1016/S0301-5629(98)00098-2.
  • 12. Hall T.J., Bilgen M., Insana M.F., Krouskop T.A. (1997), Phantom materials for elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(6): 1355-1365, doi: 10.1109/58.656639.
  • 13. Hashemi H.S., Rivaz H. (2017), Global time-delay estimation in ultrasound elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(10): 1625-1636, doi: 10.1109/TUFFC.2017.2717933.
  • 14. Havre R.F. et al. (2008), Freehand real-time elastography: Impact of scanning parameters on image quality and in vitro intra- and interobserver validations, Ultrasound in Medicine & Biology, 34(10): 1638-1650, doi: 10.1016/j.ultrasmedbio.2008.03.009.
  • 15. Hendriks G.A.G.M., Holländer B., Menssen J., Milkowski A., Hansen H.H.G., de Korte C.L. (2016), Automated 3D ultrasound elastography of the breast: A phantom validation study, Physics in Medicine & Biology, 61(7): 2665-2679, doi: 10.1088/0031-9155/61/7/2665.
  • 16. Housden R.J., Gee A.H., Treece G.M., Prager R.W. (2010), 3-D ultrasonic strain imaging using freehand scanning and a mechanically-swept probe – correspondence, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(2): 501-506, doi: 10.1109/TUFFC.2010.1431.
  • 17. Huang Q., Xie B., Ye P., Chen Z. (2015), Correspondence – 3-D ultrasonic strain imaging based on a linear scanning system, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2): 392-400, doi: 10.1109/TUFFC.2014.006665.
  • 18. Kolen A.F., Miller N.R., Ahmed E.E., Bamber J.C. (2004), Characterization of cardiovascular liver motion for the eventual application of elasticity imaging to the liver in vivo, Physics in Medicine & Biology, 49(18): 4187-4206, doi: 10.1088/0031-9155/49/18/001.
  • 19. Lee F.-F., He Q., Luo J. (2018), Electromagnetic tracking-based freehand 3D quasi-static elastography with 1D linear array: A phantom study, Physics in Medicine & Biology, 63(24): 245006, doi: 10.1088/1361-6560/aaefae.
  • 20. Lindop J.E., Treece G.M., Gee A.H., Prager R.W. (2006), 3D elastography using freehand ultrasound, Ultrasound in Medicine & Biology, 32(4): 529-545, doi: 10.1016/j.ultrasmedbio.2005.11.018.
  • 21. Lorensen W.E., Cline H.E. (1987), Marching cubes: A high resolution 3D surface construction algorithm, [in:] Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 21(4): 163-169, doi: 10.1145/37401.37422.
  • 22. Luo S., Kim E.-H., Dighe M., Kim Y. (2009), Screening of thyroid nodules by ultrasound elastography using diastolic strain variation, [in:] 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4420-4423, doi: 10.1109/IEMBS.2009.5332744.
  • 23. Madsen E.L., Frank G.R., Dong F. (1998), Liquid or solid ultrasonically tissue mimicking materials with very low scatter, Ultrasound in Medicine & Biology, 24(4): 535-542, doi: 10.1016/s0301-5629(98)00013-1.
  • 24. Mai J.J., Insana M.F. (2002), Strain imaging of internal deformation, Ultrasound in Medicine & Biology, 28(11–12): 1475-1484, doi: 10.1016/S0301-5629(02)00645-2.
  • 25. Mozaffari M.H., Lee W.-S. (2017), Freehand 3-D ultrasound imaging: A systematic review, Ultrasound in Medicine & Biology, 43(10): 2099-2124, doi: 10.1016/j.ultrasmedbio.2017.06.009.
  • 26. Richards M.S., Barbone P.E., Oberai A.A. (2009), Quantitative three-dimensional elasticity imaging from quasi-static deformation: A phantom study, Physics in Medicine & Biology, 54(3): 757-779, doi: 10.1088/0031-9155/54/3/019.
  • 27. Rivaz H., Boctor E.M., Choti M.A., Hager G.D. (2011), Real-time regularized ultrasound elastography, IEEE Transactions on Medical Imaging, 30(4): 928-945, doi: 10.1109/TMI.2010.2091966.
  • 28. Sakalauskas A., Jurkonis R., Gelman S., Lukoševicius A., Kupcinskas L. (2016), Initial results of liver tissue characterization using endogenous motion tracking method, [in:] Conference Proceedings Biomedical Engineering, pp. 132-137, http://biomed.ktu.lt/index.php/BME/article/viewFile/3392/150.
  • 29. Sakalauskas A., Jurkonis R., Gelman S., Lukoševicius A., Kupcinskas L. (2018), Development of radiofrequency ultrasound based method for elasticity characterization using low frequency endogenous motion: Phantom study, [in:] IFMBE Proceedings, Eskola H., Väisänen O., Viik J., Hyttinen J. [Eds.], Springer Singapore, pp. 474-477, doi: 10.1007/978-981-10-5122-7_119.
  • 30. Sakalauskas A., Jurkonis R., Gelman S., Lukoševicius A., Kupcinskas L. (2019), Investigation of radiofrequency ultrasound-based fibrotic tissue strain imaging method employing endogenous motion: Endogenous motion-based strain elastography, Journal of Ultrasound in Medicine, 38(9): 2315-2327, doi: 10.1002/jum.14925.
  • 31. Tristam M., Barbosa D.C., Cosgrove D.O., Nassiri D.K., Bamber J.C., Hill C.R. (1986), Ultrasonic study of in vivo kinetic characteristics of human tissues, Ultrasound in Medicine & Biology, 12(12): 927-937, doi: 10.1016/0301-5629(86)90061-x.
  • 32. Wang Y., Spangler C.H., Tai B.L., Shih A.J. (2013), Positional accuracy and transmitter orientation of the 3D electromagnetic tracking system, Measurement Science and Technology, 24(10): 105105-105113, doi: 10.1088/0957-0233/24/10/105105.
  • 33. Wells P.N.T., Liang H.-D. (2011), Medical ultrasound: Imaging of soft tissue strain and elasticity, Journal of the Royal Society Interface, 8(64): 1521-1549, doi: 10.1098/rsif.2011.0054.
  • 34. Wilson L.S., Robinson D.E. (1982), Ultrasonic measurement of small displacements and deformations of tissue, Ultrasonic Imaging, 4(1): 71-82, doi: 10.1016/0161-7346(82)90006-2.
  • 35. Zambacevičienė M., Jurkonis R., Gelman S., Sakalauskas A. (2019), RF ultrasound based estimation of pulsatile flow induced microdisplacements in phantom, [in:] World Congress on Medical Physics and Biomedical Engineering 2018, Lhotska L., Sukupova L., Lackovic I., Ibbott G.S. [Eds.], Springer Singapore, pp. 601-605, doi: 10.1007/978-981-10-9035-6_112.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2849d065-8c23-441a-bb1d-471c63d392c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.