PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of winding and shaft cooling on the thermal characteristics of a traction machine for heavy-duty distribution transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the influence of different cooling technologies on the power density of a traction machine for heavy-duty distribution transport. A prototype induction machine is built with a housing cooling jacket, potted end-windings, entire winding cooling, and shaft cooling. Electromagnetic finite element and thermal lumped-parameter models are parameterized and verified using test bench measurements. The influence of each thermal resistance along the heat paths is studied and discussed. The results are used for studying different cooling technologies. The results indicate an improvement of the continuous power density up to 108% using shaft cooling and up to 15.6% using entire winding cooling.
Słowa kluczowe
Rocznik
Strony
769--784
Opis fizyczny
Bibliogr. 17 poz., fig., tab.
Twórcy
  • Institute of Electrical Machines (IEM), RWTH Aachen University Schinkelstraße 4, 52062 Aachen, Germany
  • Institute of Electrical Machines (IEM), RWTH Aachen University Schinkelstraße 4, 52062 Aachen, Germany
autor
  • Institute of Electrical Machines (IEM), RWTH Aachen University Schinkelstraße 4, 52062 Aachen, Germany
Bibliografia
  • [1] Rotating electrical machines – Part 1: Rating and performance, IEC 60034-1:2010, modified (2011).
  • [2] Groschup B., Nell M., Hameyer K., Operational Enhancement of Electric Drives by Advanced Cooling Technologies, in 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, pp. 65–70 (2019), DOI: 10.1109/WEMDCD.2019.8887761.
  • [3] Köller S., Uerlich R., Westphal C., Franck M., Design of an Electric Drive Axle for a Heavy Truck, ATZ Heavyduty worldwide, vol. 14, no. 2, pp. 20–25 (2021), DOI: 10.1007/s41321-021-0420-8.
  • [4] Acquaviva A., Skoog S., Thiringer T., Design and Verification of In-Slot Oil-Cooled Tooth Coil Winding PM Machine for Traction Application, IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3719–3727 (2021), DOI: 10.1109/TIE.2020.2985009.
  • [5] Camilleri R., Beard P., Howey D.A., McCulloch M.D., Prediction and Measurement of the Heat Transfer Coefficient in a Direct Oil-Cooled Electrical Machine with Segmented Stator, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 94–102 (2018), DOI: 10.1109/TIE.2017.2714131.
  • [6] Lindh P., Petrov I., Pyrhonen J., Niemela M., Immonen P., Scherman E., Direct Liquid Cooling Method Verified with a Permanent-Magnet Traction Motor in a Bus, in IEEE 8th International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, pp. 2472–2477 (2018), DOI: 10.1109/TIA.2019.2908801.
  • [7] Groschup B., Nell M., Pauli F., Hameyer K., Characteristic Thermal Parameters in Electric Motors: Comparison between Induction- and Permanent Magnet Excited Machine, IEEE Trans. Energy Convers., vol. 36, no. 3, pp. 2239–2248 (2021), DOI: 10.1109/TEC.2021.3056771.
  • [8] Staton D., Boglietti A., Cavagnino A., Solving the More Difficult Aspects of Electric Motor Thermal Analysis in Small and Medium Size Industrial Induction Motors, IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 620–628 (2005), DOI: 10.1109/TEC.2005.847979.
  • [9] Wrobel R., Mellor P.H., A General Cuboidal Element for Three-Dimensional Thermal Modelling, IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3197–3200 (2010), DOI: 10.1109/TMAG.2010.2043928.
  • [10] Groschup B., Rosca A., Leuning N., Hameyer K., Study of the Thermal Conductivity of Soft Magnetic Materials in Electric Traction Machines, Energies, vol. 14, no. 17, 5310, pp. 1–18 (2021), DOI: 10.3390/en14175310.
  • [11] Stephan P., Kabelac S., Kind M., Martin H., Mewes D., Schaber K., VDI heat atlas, 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg (2010).
  • [12] von Pfingsten G., The induction machine as speed variable drive for automotive traction applications: Ph.D. dissertation, IEM of RWTH Aachen University, Herzogenrath: Shaker (2018).
  • [13] Kauder T., Ein Beitrag zum optimalen Entwurf von dreiphasigen Leistungstransformatoren für Mittelfrequenzanwendungen mit höchstmöglicher Ausnutzung und maximal möglichem Wirkungsgrad: Ph.D. dissertation, IEM of RWTH Aachen University, Aachen: Shaker Verlag GmbH (2021).
  • [14] Leuning N., Elfgen S., Groschup B., Bavendiek G., Steentjes S., Hameyer K., Advanced Soft- and Hard-Magnetic Material Models for the Numerical Simulation of Electrical Machines, IEEE Trans. Magn., vol. 54, no. 11, pp. 1–8 (2018), DOI: 10.1109/TMAG.2018.2865096.
  • [15] Magnetic materials – Part 3: Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of a single sheet tester, IEC 60404-3:1992+A1:2002+A2:2009 (2010).
  • [16] Bauer D., Mamuschkin P., Reuss H.-C., Nolle E., Influence of parallel wire placement on the AC copper losses in electrical machines, in 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeurd’Alene, ID, pp. 1247–1253 (2015), DOI: 10.1109/IEMDC.2015.7409221.
  • [17] BIPM, JCGM 100:2008: GUM 1995 with minor corrections, Evaluation of measurement data – Guide to the expression of uncertainty in measurement (2008).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2846ab67-26b7-469c-94d0-37940bfc71f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.