PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sejsmiczność, trzęsienia ziemi i lingwistyka

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Seismicity, earthquakes and linguistics
Języki publikacji
PL
Abstrakty
PL
Ogólny mechanizm trzęsień ziemi jest znany od ponad stu lat. Gromadzone przez lata naprężenia wokół uskoku – efekt przesuwania się względem siebie i deformacji płyt tektonicznych – muszą co pewien czas zostać rozładowane poprzez poślizg wzdłuż tego uskoku. Jednak dokładniejszy obraz toczącego się w strefach sejsmicznych procesu zmienił się istotnie w ostatnich latach. Zamiast pojedynczych wstrząsów oraz prostego modelu cykli sejsmicznych, dostrzegamy coraz dokładniej całe spektrum wzajemnie powiązanych procesów i zjawisk, od powolnego pełzania uskoku, poprzez tzw. powolne i ciche trzęsienia ziemi, aż do gwałtownego poślizgu podczas typowych trzęsień ziemi. Wszystkie te zjawiska, związane są z poślizgiem wzdłuż uskoków, równoważą w dostatecznie długim czasie powolne, długookresowe przesuwanie się płyt względem siebie, napędzane przez ruchy konwekcyjne w płaszczu Ziemi. Współczesny obraz sejsmiczności dobrze ilustruje porównanie z lingwistyką: spójrzmy na zjawiska sejsmiczne jak na rozmowę w obcym języku, i starajmy się ten język zrozumieć.
EN
The general mechanism of earthquakes has been known for over a hundred years. The stresses accumulated over the years around the fault – the effect of tectonic plates movement relative to each other and deforming – must be released from time to time by sliding along this fault. However, the more detailed picture of the process taking place in seismic zones has changed significantly in recent years. Instead of individual earthquakes and a simple model of seismic cycles, we see more and more clearly a whole spectrum of interrelated processes and phenomena, from slow fault creep, through the so-called slow and silent earthquakes, up to a violent slip during typical earthquakes. All these phenomena, related to slip along faults, balance for a long enough time the slow, long-term movement of the plates against each other, driven by convective motions in the Earth’s mantle. The contemporary image of seismicity is well illustrated by a comparison with linguistics: let’s look at seismic phenomena as if they were a conversation in a foreign language, and try to understand this language.
Rocznik
Tom
Strony
185--197
Opis fizyczny
Bibliogr. 45 poz. wykr.
Twórcy
  • Instytut Geofizyki PAN, Zakład Geofizyki Teoretycznej
Bibliografia
  • 1. Avouac J.-P., 2015, From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle, Annual Review of Earth and Planetary Sciences, 43, 233-271, DOI: 10.1146/annurev-earth-060614-105302.
  • 2. Beroza G.C., Segou M., Mousavi S.M., 2021, Machine learning and earthquake forecasting-next steps, Nature Communications, 12, 4761, DOI: 10.1038/s41467-021-24952-6.
  • 3. Brudzinski M., 2008, Do faults shimmy before they shake?, Nature Geoscience, 1, 295-296, DOI: 10.1038/ngeo196.
  • 4. Bürgmann R., 2018, The geophysics, geology and mechanics of slow fault slip, Earth and Planetary Science Letters, 495, 112-134, DOI: 10.1016/j.epsl.2018.04.062.
  • 5. Carlsson G.,Vejdemo-Johansson M., 2022, Topological Data Analysis with Applications, Cambridge University Press, 230 s.
  • 6. Cloos M., Shreve R.L., 1988, Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description, Pure and Applied Geophysics, 128, 455-499, DOI: 10.1007/BF00874548.
  • 7. Dolan J.F., Bowman D., Sammis C.G., 2007, Long-range and long-term fault interactions in Southern California, Geology, 35 (9), 855-858, DOI: 10.1130/G23789A.1.
  • 8. Gutenberg B., Richter C.F., 1942, Earthquake magnitude, intensity, energy and acceleration, Bulletin of the Seismological Society of America, 32 (3), 163-191, DOI: 10.1785/BSSA0320030163.
  • 9. Hall E.T., 1959, The Silent Language, Doubleday & Company, Inc., Garden City, NY, 240 s.
  • 10. Harris R.A., 1998, Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard, Journal of Geophysical Research: Solid Earth, 103 (B10), 24347-24358, DOI: 10.1029/98JB01576.
  • 11. Hashimoto C., Noda A., Matsu’ura M., 2012, The Mw 9.0 northeast Japan earthquake: total rupture of a basement asperity, Geophysical Journal International, 189 (1), DOI: 10.1111/j.1365-246X.2011.05368.x.
  • 12. Hernández-Fernández A., Torre I.G., 2022, Compression principle and Zipf’s Law of brevity in infochemical communication, Biology Letters, 18 (7), DOI: 10.1098/rsbl.2022.0162.
  • 13. Jaynes E.T., 2007, Probability Theory: The Logic of Science, Cambridge University Press, 753 s.
  • 14. Kato A., Obara K., Igarashi T., Tsuruoka H., Nakagawa S., Hirata N., 2012, Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-oki earthquake, Science, 335 (6069), 705-708, DOI: 10.1126/science.1215141.
  • 15. Kerr R.A., 1996, Seismologists learn the language of quakes, Science, 271 (5251), 910-910, DOI: 10.1126/science.271.5251.910.
  • 16. Lay T., 2012, Why giant earthquakes keep catching us out, Nature, 483, 149-150, DOI: 10.1038/483149a.
  • 17. Lay T., Kanamori H., Ruff L., 1982, The asperity model and the nature of large subduction zone earthquake occurrence, Earthquake Prediction Research 1, 3-71.
  • 18. Loveless J.P., Meade B.J., 2011, Spatial correlation of interseismic coupling and coseismic rupturę extent of the 2011 MW = 9.0 Tohoku-oki earthquake, Geophysical Research Letters, 38 (17), DOI: 10.1029/2011GL048561.
  • 19. Molnar P., 1979, Earthquake recurrence intervals and plate tectonics, Bulletin of the Seismological Society of America, 69 (1), 115-133, DOI: 10.1785/BSSA0690010115.
  • 20. Moreno M., Rosenau M., Oncken O., 2010, 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467, 198-202, DOI: 10.1038/nature09349.
  • 21. Murotani S., Matsushima S., Azuma T., Irikura K., Kitagawa S., 2015, Scaling relation of source parameters of earthquakes on inland crustal mega-fault systems, Pure and Applied Geophysics, 172, 1371-1381, DOI: 10.1007/s00024-014-1010-9.
  • 22. Peng Z., Gomberg J., 2010, An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nature Geoscience, 3, 599-607, DOI: 10.1038/ngeo940.
  • 23. Quine W.V.O., 1953, Two dogmas of empiricism, [w:] From a Logical Point of View, S. Guttenplan (red.), Clarendon Press, Oxford.
  • 24. Quine W.V.O., 1975, The nature of natural knowledge, [w:] Mind and Language, S. Guttenplan (red.), Clarendon Press, Oxford.
  • 25. Reid H.F., 1910, The California Earthquake of April 18, 1906. Report of the State Earthquake Investigation Commission, Vol. II: The Mechanics of the Earthquake, 29-32, Carnegie Institution of Washington, Washington DC.
  • 26. Roesler O., 2022, Combining unsupervised and supervised learning for sample efficient continuous language grounding, Frontiers in Robotics and AI, 9, DOI: 10.3389/frobt.2022.701250.
  • 27. Scholz C.H., Campos J., 2012, The seismic coupling of subduction zones revisited, Journal of Geophysical Research: Solid Earth, 117 (B5), DOI: 10.1029/2011JB009003.
  • 28. Schurr B., Asch G., Hainzl S., Bedford J., Hoechner A., Palo M., 2014, Gradual unlocking of plate boundary-controlled initiation of the 2014 Iquique earthquake, Nature, 512, 299-302, DOI: 10.1038/nature13681.
  • 29. Senatorski P., 2004a, Interactive dynamics of a heterogeneous seismic source: A model with the slip-dependent friction, Publications of the Institute of Geophysics, Series: Physics of the Earth’s Interior, A-27, 354.
  • 30. Senatorski P., 2004b, Złożoność trzęsień Ziemi i ich prognozowanie, Przegląd Geofizyczny, 3-4, 131-146.
  • 31. Senatorski P., 2002a, Trzęsienia ziemi: obserwacje i modele, Publications of the Institute of Geophysics, Series: Miscellanea, M-25, 347.
  • 32. Senatorski P., 2002b, Slip-weakening and interactive dynamics of a heterogeneous seismic source, Tectonophysics, 344 (1-2), 37-60, DOI: 10.1016/S0040-1951(01)00263-3.
  • 33. Senatorski P., 2017, Effect of slip-area scaling on the earthquake frequency-magnitude relationship, Physics of the Earth and Planetary Interiors, 267 (5), 41-52, DOI: 10.1016/j.pepi.2017.04.004.
  • 34. Senatorski P., 2019, Effect of slip-weakening distance on seismic-aseismic slip patterns, Pure and Applied Geophysics, 176, 3975-3992, DOI: 10.1007/s00024-019-02094-7.
  • 35. Senatorski P., 2020, Gutenberg-Richter’s b-value and earthquake asperity models, Pure and Applied Geophysics, 177, 1891-1905, DOI: 10.1007/s00024-019-02385-z.
  • 36. Sieh K., Natawidjaja D.H., Meltzner A.J., Shen C.-C., Cheng H., Li K.-S., Suwargadi B.W., Galetzka J., Philibosian B., Edwards R.L., 2008, Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra, Science, 322 (5908), 1674-1678, DOI: 10.1126/science.1163589.
  • 37. Soquet A., Valdes J.P., Jara J., Cotton F., Walpersdorf A., Cotte N., 2017, An 8-month slow slip event triggers progressive nucleation of the 2014 Chile megathrust, Geophysical Research Letters, 44 (9), 4046-4053, DOI: 10.1002/2017GL073023.
  • 38. Sykes L.R., 2020, Decadal Seismicity Prior to Great Earthquakes at Subduction Zones: Roles of Major Asperities and Low-Coupling Zones, dostępne online https://www.ldeo.columbia.edu/_sykes/seismology paper/Decadal29oct2020.pdf.
  • 39. Torre I.G., Luque B., Lacasa L., Kello C.T., Hernández-Fernández A., 2019, On the physical origin of linguistic laws and lognormality in speech, Royal Society Open Science, 6, DOI: 10.1098/rsos.191023.
  • 40. Uchida N., 2019, Detection of repeating earthquakes and their application in characterizing slow fault slip, Progress in Earth Planetary Science, 6, DOI: 10.1186/s40645-019-0284-z.
  • 41. Utsu T., Ogata Y., Matsu’ura R., 1995, The centenary of the Omori formula for a decay law of aftershock activity, Journal of Physics of the Earth, 43, (1), DOI: 10.4294/JPE1952.43.1
  • 42. VanderPlas J., 2017, Python Data Science Handbook: Essential Tools for Working with Data, O’Reilly Media.
  • 43. Vannucchi P., Sage F., Phipps Morgan J., Remitti F., Collot J.-Y., 2012, Toward a dynamic concept of the subduction channel at erosive convergent margin with implications for interplate material transfer, Geochemistry, Geophysics, Geosystems, 13 (2), DOI: 10.1029/2011GC003846.
  • 44. Watts A.B., Koppers A.A.P., Robinson D.P., 2010, Seamount subduction and earthquakes, Oceanography, 23 (1), 166-173, DOI: 10.5670/oceanog.2010.68.
  • 45. Wells L., Coppersmith K.J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84 (4), 974-1002, DOI: 10.1785/BSSA0840040974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2841a95e-cf38-4803-84bc-12c5e233893f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.