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ponents’ reliability on the overall system reliability is usually done 
by using importance measures. The concept of importance measures, 
originally introduced by Birnbaum [2] and Vesely [23], has been sig-
nificantly changed and improved over time. Structural and probabi-
listic importance measures are used most often, but a small number 
of importance measures that take into account the costs of improving 
the reliability of the individual components have also been developed 
over the last few years [12, 24]. A common feature of the majority of 
importance measures is that component’s importance to the system 
functioning and failure is determined based on the calculated value of 
a chosen importance measure [27]. Therefore, the general procedure 

1. Introduction

Improvement of the reliability of a complex system, besides pro-
viding redundancy of components, is achieved by improving the re-
liability of the individual components that have the greatest impact 
on the overall reliability of the system. In this paper, we consider a 
complex system as a system with multiple interactions between many 
different components [15] in which the behavior of the system cannot 
be easily and directly induced from the behavior of its components 
[3]. Within the context of reliability, main characteristics of a complex 
system are: large number of components, cut sets, path sets or com-
ponents’ states dependencies [7]. Analysis of the impact of the com-
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W złożonych systemach, w których koszty poprawy niezawodności poszczególnych elementów są znane, często ogranicza się 
budżet przeznaczony na podnoszenie ogólnej niezawodności systemu. W takich przypadkach konieczna jest maksymalizacja nie-
zawodności systemu przy jednoczesnym utrzymaniu kosztów na poziomie minimum. Powszechnie znane metody rozwiązywania 
powyższego problemu opierają się na wyznaczaniu ważności kosztów, co wymaga określenia rang elementów składowych syste-
mu, a w dalszej kolejności wyodrębnienia pewnej liczby najważniejszych elementów pierwszorzędnej rangi. W niniejszej pracy 
zaproponowano nowe podejście do określania najważniejszych komponentów systemu w oparciu o problem maksymalnego po-
krycia w granicach budżetu (budgeted maximum coverage problem); podejście wdrażano z wykorzystaniem wcześniej znanych 
minimalnych przekrojów niezdatności. Optymalizacja proponowanego modelu matematycznego, pozwoliła na jednoczesne wy-
znaczenie wszystkich najważniejszych elementów, dla których łączne wydatki na utrzymanie ruchu nie przekraczały całkowitego 
ograniczonego budżetu. Nowe podejście zostało przebadane w serii eksperymentów przeprowadzonych na zbiorze przykładów 
testowych, za które posłużyły wzorcowe drzewa błędów. Wyniki badań porównano z wynikami uzyskanymi za pomocą dwóch miar 
ważności kosztów – miary ważności opartej na kosztach oraz miary ważności opartej na opłacalności. W większości przypadków, 
proponowany model dawał lepsze wyniki niż pomiary ważności kosztów.
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of their application is: firstly, the numerical value for the importance 
of each individual component is calculated using the chosen impor-
tance measure formulae; secondly, components are ranked consider-
ing previously calculated values. In the case a desired number k of 
the most important components need to be determined, it would be 
the k first-ranked components since the higher ranked components 
are considered the most critical. There are some importance measures 
available in the literature that do not fully share the mentioned com-
mon feature. Joint Reliability Importance (JRI) analyses a pair of 
components [1], Differential Importance Measure (DIM) is calculated 
as a sum of the individual importance measures [4], and enxtention 
of DIM called DIMII combines JRI and DMI [29]. However, accord-
ing to Zio [28], the fact that the majority importance measures rank 
only individual components so that they are not directly applicable to 
combinations or groups of components, is still one of the open issues 
on importance measures.

The subject of this paper is the formulation and validation of a 
new importance measure which, unlike the existing approaches, be-
sides considering costs of individual components takes into account 
their mutual impact on the overall system reliability. The new meas-
ure is formulated as an optimization problem, more precisely as the 
Budgeted Maximum Coverage Problem (BMCP). BMCP is presented 
by Khuller as the variation of Maximum Coverage Problem [13], but 
in literature, it is also recognized as a Maximum Coverage with Knap-
sack Constraints [8]. The approach found its application in graphs 
[5, 21], location problems [19] and healthcare networks monitoring 
[6]. This paper could indicate the first usage of  BMCP in reliability 
since the authors of this paper have not been able to find any pre-
vious applications in this area. There are examples in the literature 
where information provided by importance measures is used in the 
formulation of an optimization problem in order to obtain a system 
design in which all components have similar importance values [30]. 
However, according to our knowledge, optimization approach so far 
has not been used to determine the importance of the components. 
Using the new proposed optimization approach all of the most critical 
components are determined simultaneously, and the sum of their indi-
vidual costs fits the available budget. The approach is experimentally 
tested and the obtained results verifying the approach are presented 
and explained.

The proposed approach is based upon minimal cut sets (MCSs) 
of coherent fault trees, so the terminology of the fault tree analysis is 
used. Primary events, which represent the system components’ fail-
ures, are elements of MCSs. Cut sets and MCSs are defined as fol-
lows:

Definition 1 [9]: Cut set is a set of events that together cause the 
top undesired event to occur.

Definition 2 [9]: Minimal cut set (MCS) is a cut set reduced to 
a minimum number of events that cause the top undesired event to 
occur.

MCSs are most commonly generated based on a fault tree of the 
observed system [16]. Formally, a fault tree is a directed and con-
nected acyclic graph G=(N,A), where N is the set of nodes and A is 
the set of arcs (Fig. 1).

The top event of the fault tree (root node TE), represents a sys-
tem failure. The failure modes of the system components are primary 
events (components’ failures) represented by leaves e1-e6. Besides 
intermediate nodes G1-G4, a given fault tree has four logic opera-
tors that model the cause-effect relationships between components’ 
failures - two OR operators are assigned to G1 and G2 while two 
AND operators are assigned to nodes G3 and G4. For the fault tree 
shown in Figure 1, MCSs are: e1e4, e1e5e6, e2e3e4 and e2e3e5e6. 
Each of these combinations of primary events could cause the system 
failure. The qualitative analysis (in the process of Boolean reduction 
of a set of equations) identifies the minimal cut sets which are the 
combinations of the smallest number of primary events and if they 

occur simultaneously, they may lead to a top event. The top event can 
be expressed as [26]
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where TE is the top event, MCSi is the i-th minimal cut set, n is the to-
tal number of minimal cut sets, Pj is the j-th primary event and m is the 
total number of primary events. The quantitative analysis represents 
a calculation of the top event probability. Considering the assumption 
that the primary events are mutually independent, the top event prob-
ability of occurrence QTE may be approximated as [26]
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where QMCSi  is the probability of occurrence of the minimal cut set 
i and QPj  is the probability of occurrence of the primary event j. The 
proposed approach assumes that all MCSs of a given fault tree are 
already determined.

The paper is organized as follows: Section 2 deals with importance 
measures that consider the cost of components used for the validation 
of a proposed approach. The problem of simultaneous determination 
of the most critical system components constrained with alimited 
budget is formulated as BMCP in Section 3. A mathematical model of 
a formulated optimization problem and solving methods are presented 
in Section 4. Section 5 gives the comparison of the results obtained 
by the proposed model with the results obtained using the importance 
measures from Section 2, tested on a group of benchmark fault trees. 
Concluding remarks and discussion are presented in Section 6.

2. Importance measures that consider costs of compo-
nents

The importance measures indicate the system components that 
have the greatest impact on the reliability of the system [10]. Over-
views of  some of the most used importance measures are available in 
many books and papers [14, 20, 22].

The two importance measures used in this paper to compare re-
sults with our proposed approach are Cost-based component impor-
tance (CBCI) and Cost-effective importance measure (CEIM).

CBCI is introduced as the extension of Birnbaum importance 
[25]. In our paper CBCI of component i is defined as:
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Fig. 1. Fault tree example
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where ∂Ci(t) and ∂Ri represent the increase of system cost and sys-
tem reliability caused by reliability improvement of i-th component, 
respectively. CBCI can be interpreted as follows: when I ti

CBCI ( )  is 
large, a small change in the reliability of component i will result in a 
comparatively large change in the total cost of maintaining the entire 
system during the time interval (0,t).

CEIM combines the concept of reliability importance measure 
and the total costs of failure, and it is defined as:

	 I t
I t
Ci

CEIM i
GI

f i
( ) = ( )

,
	 (4)

where Ii
GI  is the general importance (GI) of component i at time 

t, and Cf,i is a cost factor for i-th component. GI of component i is 
calculated as:

	 I t
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where Δ gi(Q(t)) represents the change in system probability due 
to change in i -th component probability. The cost factor for i -th com-
ponent is calculated as the ratio of sum of the expected costs of failure 
for all components and the expected cost of reliability improvement 
for i -th component:

	 g Q ti ( )( ) 	 (6)

where E(Ci) is the expected cost of reliability improvement for i -th 
component. A component which gives a maximum benefit at mini-
mum costs will be termed as the most cost-effective component and 
will possess the highest rank in priority list [12].

3. Problem formulation

In this paper, we observe the improvement of components reli-
ability as a decrease of component’s failure probability to a very low 
or negligible value, close to zero. This assumption appears in most 
importance measures and represents a decreased risk level with the 
component optimized or assumed to be perfectly reliable, i.e. compo-
nents reliability equal to 1 [20].

If we observe the fault tree given at Figure 1, we can assign costs 
for their six primary components, for example: c1=5, c2=6, c3=7, 
c4=8, c5=7 and c6=6 cost units (c.u.). Also we can assume some lim-
ited budget, for example B=15 c.u., available for improvement of the 
most critical system components. In that case, both CBCI and CEIM 
can be calculated using equations (3) and (4) in order to find which 
components should be improved. After calculation of values for each 
component, we are able to make rankings presented in the table below:

Both measures basically gave the same output. They selected 
components e1 and e4 as the most critical, and their total costs of 
improvement of 13 c.u. fit the available budget. If we calculate the 

overall system reliability improvement, we get apercentage of 99.17, 
which is a good result. This improvement is obtained by comparing 
the initial system reliability with the reliability of the system in which 
selected components (e1 and e4) are assumed to be perfectly reliable.

Observing the list of MCSs from the example given in figure 1, it 
can be seen that primary events e1 and e2 are present in every MCS. 
Therefore, if those two components were selected for improvement of 
their reliability i.e. the probability of their failure is set to zero, then 
regarding equation (2) the probability of occurrence of TE would also 
equal  zero. Thus, by selecting components e1 and e2 the percentage 
of 100 % of system reliability improvement can be achieved. Com-
ponents e1 and e2 fits limited budget even better, as their total costs 
are only 11 c.u.

In addition, if the available budget is increased, the results of 
CBCI and CEIM could be used just to add next lower ranked com-
ponent to the set of the previously selected most critical components 
with a higher ranking. The approach proposed in this paper in case 
of increasing the available budget is able to find completely different 
set K of k critical components which achieve higher overall system 
reliability improvement, while still fitting the budget. The traditional 
way of calculating importance measures by making independent cal-
culations for each individual component and linear expansion of set K 
of k critical components in case the available budget is increased, are 
issues that are overcome by the approach proposed in this paper.

The new approach of determining the most important system com-
ponents relies on minimal cut sets defined in the introduction chapter. 
The basic implication of definitions 1 and 2 is - if any of components/
events which are the element of an MCS can be prevented to fail, then 
MCS stops to be the cause of possible system failure and is considered 
eliminated or “covered”. The probability of realization of  MCS is 
then used to diminish the overall system failure probability, i.e. sys-
tem reliability is improved at the same rates. The goal is to select 
components which should be improved so that their non-failure would 
maximize the reduction of the overall system failure probability.

Starting presumptions are:
Minimal cut sets of the observed system are known•	
Probabilities for failure of systems’ components are given (or •	
their order of magnitude)
Cost of improvement is known for each individual component•	
Total budget available for system reliability improvement is •	
given and limited

The proposed approach can be formulated as an optimization 
problem described as follows: allocate the available budget to ensure 
non-failure of components which eliminate the most probable MCSs 
i.e. which maximize the reduction of the system failure probability.

4. Mathematical model and solving methods

Mathematical model of described optimization problem is made 
using the following notation:

S––  - set of primary events; 
i–– ∈S - primary event which represents the failure of i-th system 
component; 
m––  - the number of MCSs;
w–– j – weight, i.e. probability for the realization of j-th minimal 
cut set (calculated by multiplying failure probabilities of its 
components) 
c–– i – cost for preventing i-th component from failure, i.e. im-
proving it for non-failure
B – available budget for system reliability improvement––
a–– ij - binary variable defined as:

a
i j

ij =
1
0

,
,
if -th component�is an element of -th minimal cut-set
otheervise





Table 1. Rankings of components’ importance using CBCI and CEIM

Rank Component 
ranking by CBCI

Calculated 
CBCI value

Component 
ranking by CEIM

Calculated 
CEIM value

1. e1 40.58 e4 0.19

2. e4 64.94 e1 0.12

3. e6 175.93 e3 0.02

4. e2 175.93 e5 0.02

5. e3 205.28 e2 0.01

6. e5 205.28 e6 0.01
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x–– i - binary variable called a disabling indicator associated with 
the primary event i, i∈S, defined as:

x
i

i =
1, if the primary event is disabled (componetnt functioning)
0, oothervise component failure �( )




y–– j - binary variable called elimination indicator associated with 
the MCS j, j=1,…,m, defined as:

	
y

j
i =





1, if -th minimal cut-setis disabled (covered)
0, othervise  

The mathematical model of allocating limited budget to prevent 
failure of those components which eliminate the most probable mini-
mal cut sets, is formulated as follows:

BMCP (budgeted maximum coverage model):

	 max f x y w y
j

m
j j,( ) =

=
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Objective function maximizes the overall probability of eliminated 
MCSs which implicate the increase of system reliability. The first con-
straint ensures elimination of all of the MCSs which contain any failure 
prevented components. The second constraint is related to the available 
budget. Considering the first constraint and the maximization of the ob-
jective function, the binary requirement for avariable  can be relaxed with 
. The formulated mathematical model corresponds to the Budgeted 
Maximum Coverage Problem [13] as well as a Maximum Coverage 
with Knapsack Constraints [8].

Mathematical model BMCP was solved in two ways. Firstly, it 
was solved exactly using GLPK solver [11], and then the possibility of 
failure equal to zero was assigned to all selected events that should be 
prevented; using equation (2) a new system reliability and the percent-
age of reliability improvement is calculated. Secondly, it was solved 
using a heuristic developed for the observed problem, called Greedy-
Plus. The proposed heuristic uses a variation of the greedy algorithm, 
slightly improved to be able to recognize and remove components 
which cover redundant MCSs. Thus the overall system reliability 
could be improved by selecting some new components whose failures 
should be prevented. For each event, weights of all MCSs that contain 
specific event are summarized and based on that, events are sorted in 
a non- decreasing array. Events are selected, starting from the first one 
of that series until the budget is exhausted. Algorithm also picks the 
cheapest components in the case of a tie. After each selection of event, 
all MCSs containing the selected event are eliminated, i.e. set to 0, 
and the remaining events after each step form a new array based on 
the weights of the remaining uncovered MCSs. Adaptation of greedy 
algorithm is reflected in the fact that the reduction procedure after 
each step has to check whether any of the already selected events is 
unnecessary, i.e. whether it covers exactly the same MCSs as some of 
the already selected events. In this case, the solution is reduced, i.e. 
such an event is discarded. The budget is increased for the amount of 
cost of discarded event so a new event needs to be selected. Since the 
BMCP is NP-hard [13], it can be difficult to find its optimal solution 
for large fault treesin areasonable time. For this purpose, GreedyPlus 
could be used as the starting point for future development of some 

special heuristics that would deal with the mentioned problem. Al-
gorithm of GreedyPlus and pseudo-codes for the used procedures are 
given below. Notation used in algorithm description is:

Wi 	 – the sum of the weights of MCSs that contain i-th event, i∈S,
L 	 – non-decreasing array consisting of non-redundant calculated  

			  values Wi, i∈K.
ci 	 – cost for i-th component being prevented from failure
B 	 – available budget for system improvement

Algorithm 1. GreedyPlus
1 greedy()
2 count single coverings and form array L
3 reduction()

Procedure 1.greedy (MCS[m][l], c[i], B)

1	 end_signal⟵0
2	 repeat
3		  i⟵1				  
4		  repeat
5			   j⟵1		
6			   repeat
7				    if MCS[i][l]=j then
8					     W[i] ⟵ W[j]+poss[j]	
9				    if MCS[i][j]=0 or B=0 then
10					     end_signal⟵1
11				    if W[i]>max then
12					     max⟵W[i]
13					     X[F] ⟵i
14					     B⟵B-c[i]
15					     MCS[i][l] ⟵0
16			   until j=n
17		  until i=m
18	until end_signal=1

Procedure 2. reduction (X[F], Lmin, appearanceNo[F])

1	 singleCover[]⟵0 
2	 i⟵1
3	 repeat
4		  if X[i]=appearanceNo[i] then
5			   singleCover[i]⟵ singleCover[i]+1			
6	 until i= F
7	 i⟵1
8	 repeat
9		  if singleCover[i]=0 then
10			   singleCover[i]⟵ singleCover[i]+1
11			   B⟵B+c[i]		
12			   X[i] ⟵Ø					   
13	 until i= n
14	 greedy (MCS[m][l], c[i], B) 

Both solutions of BMCP model, the optimal solution obtained by 
GLPK and the solution obtained using GreedyPlus, were compared 
with solutions obtained by CBCI and CEIM.

5. Experimental results

The proposed new approach is first ilustrated on the fault tree of 
train rear-end collision accident and then on a group of benchmark 
fault trees.
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The fault tree of train rear-end collision accident, retrieved from 
[17], consists of 35 primary and 17 intermediate events. The observed 
fault tree has 24000 MCSs which means that top event called “train 
rear-end collision” has 24000 failure modes. The rank, i.e. the number 
of primary events of 18000 MCSs is nine while the rank of the re-
maining 6000 MCSs is eight.

In order to apply the proposed approach, the following assump-
tions were introduced: the probabilities of all primary events are 0.01; 
the available budget for system reliability improvement is 60 cost 
units; and the costs for preventing components from failure are be-
tween 5 and 30 cost units. In addition, since events 1 and 2 from [17] 
appear in all MCSs, those two events are immediately identified as 
the most important and further analysis was made for the remaining 
33 events.

Presented mathematical model (7-9) was first solved exactly 
using GLPK solver [10] and the percentage of reliability improve-
ment is calculated according to the optimal solution. Then, reliability 
improvement percenteges obtained by CBCI and CEIM importance 
measures are calculated in the following steps:
step 1:		  Using equations (3) and (4), different ranks of primary events 

were obtained.
step 2:		  The possibility of failure eaqual to zero was assigned to the 

top ranked primary events whose total costs do not exceed 
the available budget.

step 3:		  A new system reliability was calculated. 
step 4:		  Percentages of improvement of the system relialibility were 

calculated.

Optimization using GLPK and steps 1 to 4 were repeated for ten 
instances of randomly generated costs for preventing components 
from failure. The obtained results are presented in Table 2. Notation 
used in Table 2 is:  BS = budget spent (percentage), NC = number of 
components, and RI = reliability improvement (percentage).

The results in Table 2 show that the proposed approach outper-
forms both importance measures in all ten instances. In eight instanc-
es, reliability improvement of 100% is achieved which means that 
obtained events cover all MCSs. In the case of CEIM and CBCI, such 
reliability improvement is obtained only in one instance. This is di-
rectly caused by the fact that those measures calculate only individual 
contribution to system reliability and do not consider the impact of 
groups of components. On the other hand, based on the proposed ap-
proach, a set of the most important components often contains compo-
nents whose individual impact is not among the best ranked. For ex-
ample, in the first instance, the set of the most critical events consists 
of events: 7, 8, and 9, according to the optimal solution of (7-9). The 

event 8 is second ranked by CEIM, event 9 is sixst ranked by CBCI, 
while the event 7 is not among the first ranked by any of them. How-
ever, their combination provides the highest reliability improvement. 
Similar observations apply for all other instances.

Mathematical model (7-9) and the proposed algorithm are af-
terwards verified by experiments conducted used as test examples 
[18]. Characteristics of those benchmark fault trees (BFT) are given 
in Table 3:

The column labeled with E gives the total number of events con-
tained in fault tree, while BE column gives the number of primary 
events (components’ failure) i.e. events that form minimal cut sets. 
Total number of minimal cut-sets in the fault tree is given in the col-
umn MCS. Column R gives ranges of ranks for minimal cut-sets (e 
g. a tree named das9201 has the smallest MCS’s rank of 2, while the 
highest rank of MCSs in that BFT is 7, and so on). 

Ten random instances of costs of improvement for primary events/
components are generated for each BFT given in Table 3. For each in-
stance four available budgets were tested, so it was made 160 experi-
ments in total. Each experiment gave four outputs for each of tested 
methods (CBCI, CEIM, GLPK and GreedyPlus). Average values of 
the experimental results are presented in Table 4.

Notation used in Table 4 is given bellow:
ABS		 = average budget spent (cost units)
ANC	 	= average number of components (avg 	for 10 instances, each 

inst. outputed int value)
ARI			  = average reliability improvement (percentage)
B			   = available budget (cost units)

Observing the obtained results, it can be seen that GLPK and 
GreedyPlus gave better, or at least the same quality outputs as CBCI 
and CEIM, i.e ARI value in columns labeled GLPK and GreedyPlus 

are generally much larger than values in 
CBCI and CEIM columns. Due to the way 
of calculation, CBCI tends to select a greater 
number of cheaper components while CEIM 
prefers a smaller number of expensive ones, 
but neither of those two traditionally calculat-
ed importance measures managed to give bet-
ter results than our newly proposed approach 
applied in GLPK and GreedyPlus.

Also, it should be noted that it is pos-
sible to achieve the same system reliability 
improvement with the same amount of budg-
et but with aselection of a different number 
of critical components. If so, all outputs of 
such kind are actually multiple solutions 
and have equal quality, but it simply looks 
wiser to choose a solution with fewer critical 
components and  less time needed for their 
prevention.

Table 2. Results of ten instances for the fault tree of train rear-end collision accident

GLPK CEIM CBCI

instances NC RI BS NC RI BS NC RI BS

1 3 100 78.33 3 60 98.33 8 85.60 100

2 4 100 90 2 46.67 100 7 74.54 95

3 4 100 100 3 73.33 100 8 90.40 95

4 4 100 95 3 66.67 100 8 82.28 100

5 4 100 100 3 75 100 7 82.28 90

6 3 100 98.33 3 100 98.33 7 84.41 98.33

7 8 98.95 100 3 60 100 8 85.60 86.67

8 4 100 98.33 2 40 93.33 7 88 100

9 5 84.85 98.33 2 50 100 6 76.62 100

10 4 100 98.33 3 73.33 98.33 7 83.04 88.33

average 4.30 98.38 95.67 2.70 64.50 98.83 7.30 83.28 95.33

Table 3.	 Benchmark fault trees

BFT name E BE MCS R

das9201 204 122 14217 2-7

das9202 85 49 27778 1-11

baobab2 72 32 4805 2-6

baobab3 187 80 24386 2-11
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Comparing GLPK outputs with the outputs of GreedyPlus, it can 
be observed that the improved greedy algorithm reached an average 
reliability improvement obtained by the exact algorithm only in three 
cases (das9201 with B=160, das9202 with B=10 and baobab2 with 
B=7), while all other results are very close to optimal. These three 
cases achieved smaller ABS value due to the way in which the im-
proved greedy algorithm treats multiple solutions – it always picks a 
cheaper one, while GLPK just takes care about the goal function i.e. 
the overall system improvement.

6. Conclusion

The problem of determining the set of the most critical system 
components in case of a limited budget has been solved by a new ap-
proach which formulates a problem as a Budgeted Maximum Cover-

age Problem. The approach is successfully tested and verified by a se-
ries of experiments over benchmark fault trees. It is concluded that in 
cases where MCSs are pre-known, it  is more convenient to apply this 
new approach rather than importance measures as CBCI and CEIM.

The proposed approach could be limited by the impossibility of 
obtaining exact solutions in a reasonable time for the problems of 
large dimensions. Therefore, in a further work the presented improved 
greedy algorithm could be incorporated into specially designed heu-
ristics, possibly based on Variable neighborhood search (VNS).

Table 4.	 Experimental results given as average values of results obtained on ten instances

CBCI CEIM GLPK GreedyPlus

ABS ANC ARI ABS ANC ARI ABS ANC ARI ABS ANC ARI

da
s9

20
1

B=26 23.4 4.4 18.79 23.9 1.1 14.33 24.8 2.9 30.73 24.5 2.8 30.65

B=53 49.3 8.7 27.77 52.2 2.7 38.63 52.6 4.8 51.89 51.5 4.6 51.69

B=106 102.8 16 44.89 104.5 6 75.72 104.7 7.4 82.41 104.2 7.1 82.33

B=160 157.2 22.5 52.95 159.1 8.5 92.20 154.4 8.9 96.64 146.1 8.6 96.64

da
s9

20
2

B=10 6.1 1.1 6.02 7.8 1 14.16 7.8 1 14.16 7.6 1 14.16

B=21 18.1 3 9.65 20.5 1.7 44.14 20 2 46.09 19.9 1.8 46.03

B=42 38.2 5.8 12.31 41.3 2.6 87.29 41.3 2.8 87.61 41.3 2.7 87.60

B=64 59.7 8.2 16.69 62.6 3.6 92.84 62.8 4.1 96.15 62.6 4 96.08

ba
ob

ab
2

B=7 5.3 1 13.66 5.8 1 14.82 5.8 1 14.82 5.5 1 14.82

B=14 12 2 28.07 12.4 1.1 22.01 12.5 1.9 29.09 12.2 1.7 27.18

B=28 26.3 4.1 43.59 26.6 1.7 32.83 27 3.3 51.64 26.7 2.8 50.75

B=42 38.8 5.6 56.45 40.7 2.3 45.70 40.9 4.2 65.86 40.6 4.1 65.26

ba
ob

ab
3

B=17 15.8 3 13.81 15.1 1.1 16.76 15.1 2 23.95 15 1.5 20.85

B=35 31.7 5.4 25.68 34.7 2 25.83 34.3 3.6 40.62 33.7 2.5 35.17

B=70 66.3 10.2 37.24 68.3 3.1 41.93 68.9 5.7 62.48 68.7 4.3 57.67

B=105 101.4 14.3 46.07 103.3 4.4 55.32 103.6 6.9 79.09 103.5 6.3 76.81
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