PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Daily electricity demand assessment on the example of the Turkish road transport system – a case study of the development of electromobility on highways

Treść / Zawartość
Warianty tytułu
PL
Ocena dobowego zapotrzebowania na energię elektryczną na przykładzie tureckiego systemu transportu drogowego – studium przypadku rozwoju elektromobilności na autostradach
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to investigate how the daily electricity demand from road transport related to the implementation of an electric road system on the eight roads with the highest traffic flow connecting the seven largest cities in Turkey varies according to time and location. Intercity highway route O-7, O-5, O-21, D715, D687, E96, and E87 in Western Turkey was used as a case study. The daily electricity demand on the eight roads working on the full electrification of the existing traffic flow can be increased by 3.7% in the case of the reference point. However, if all roads in Turkey are converted to an electric road system and all land vehicles use this system, the corresponding peak power increase will be 100%. The daily electricity demand along the roads is derived from the available measuring points for the daily road traffic volumes. The study also compares the CO2 reduction potentials and energy demands of the electrified road system with the use of fossil fuels to achieve the same transportation volume. The results show that an electric road system application on eight Turkish roads with considerable traffic flow can reduce 18.8 million tons of CO2 emissions from the road transport sector. The research can find practical application in assessing the validity of developing a strategy for the development of electromobility on highways in Turkey.
PL
Celem tego artykułu jest zbadanie, w jaki sposób dobowe zapotrzebowanie na energię elektryczną w transporcie drogowym związane z wdrożeniem elektrycznego systemu drogowego na ośmiu drogach o największym natężeniu ruchu, łączących siedem największych miast w Turcji, zmienia się w zależności od czasu i lokalizacji. Jako studium przypadku wykorzystano autostradę międzymiastową O-7, O-5, O-21, E96 i E87 w zachodniej Turcji. Dobowe zapotrzebowanie na energię elektryczną na ośmiu drogach pracujących nad pełną elektryfikacją istniejącego ruchu może w przypadku punktu odniesienia wzrosnąć o 3,7%. Jeśli jednak wszystkie drogi w Turcji zostaną przekształcone w elektryczny system drogowy i wszystkie pojazdy lądowe będą korzystać z tego systemu, odpowiedni wzrost mocy szczytowej wyniesie 100%. Dobowe zapotrzebowanie na energię elektryczną wzdłuż dróg pochodzi z dostępnych punktów pomiarowych dobowego natężenia ruchu drogowego. Badanie porównuje również potencjały redukcji CO2 i zapotrzebowanie energetyczne zelektryfikowanego systemu drogowego z wykorzystaniem paliw kopalnych w celu osiągnięcia tej samej wielkości transportu. Wyniki pokazują, że zastosowanie elektrycznego systemu drogowego na ośmiu tureckich drogach o znacznym natężeniu ruchu może zmniejszyć emisję CO2 o 18,8 mln ton z sektora transportu drogowego. Badania mogą znaleźć praktyczne zastosowanie w ocenie zasadności opracowania strategii rozwoju elektromobilności na autostradach w Turcji.
Twórcy
  • Department of Electrical Engineering, Ardahan University, Ardahan, 75002, Turkey
  • West Pomeranian University of Technology Szczecin, Faculty of Economics. Zołnierska 47, Szczecin 71-210, Poland
Bibliografia
  • [1] Alwesabi Y., Liu Z., Kwon.,S Wang Y., 2021, A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses., Energy, 230,120806, doi: 10.1016/j.energy.2021.120806.
  • [2] Bellocchi. S., Gambini M., Manno M., Stilo T., Vellini M., 2018, Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case. Energy, 161,172–182, doi: 10.1016/j.energy.2018.07.068.
  • [3] Coban H.H., Rehman A., Mohamed A., 2022, Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport, Energies,15 (5),1–20, doi: 10.3390/en15051925.
  • [4] Devogelaer D., Gusbin D., 2009, EU Energy/Climate package and energy supply security in Belgium, Work Paper 16-09, Federal Planning Bureau, Brussels, 29-30.
  • [5] Distribution of carbon dioxide emissions produced by the transportation sector worldwide in 2020, by subsector Statista,2021,https://www.statista.com/statistics/1185535/transport-carbon-dioxide-emissions-breakdown/#:~:text=The global transportation sector is,percent of global transportation emissions. [access: 24.07.2022].
  • [6]Domingues-Olavarría G., Márquez-Fernández, F J,. Fyhr P., Reinap A., Alaküla M., 2018, Electric roads: Analyzing the societal cost of electrifying all Danish road transport, World Electric Vehicle Journal, 9(1), 1–11, doi: 10.3390/wevj9010009.
  • [7] Economidou M., Todeschi V., Bertoldi P., D’Agostino D., Zangheri P., Castellazzi L., 2020, Review of 50 years of EU energy efficiency policies for buildings, Energy of Building, 225,110322, doi: 10.1016/j.enbuild.2020.110322.
  • [8] Ediger, V., 2018, An integrated review and analysis of multi-energy transition from fossil fuels to renewables, Energy Procedia,156 (September). 2–6, doi: 10.1016/j.egypro.2018.11.073.
  • [9] Ellingsen, L. A. W., 2017, The size and range effect: Life-cycle greenhouse gas emissions of electric vehicles. Environmental Research Letters,11(5) 8-9.
  • [10] European Commission, Transport emissions, https://ec.europa.eu/clima/eu-action/transport-emissions_en. [access: 24.06.2022].
  • [11] Girisen A. R., Ozcan H., Cakmak A., Genez B., 2021, A study on the estimation of fuel consumption and emitted emissions from vehicles in Turkey until 2050, International Journal of Automotive Engineering and Technologies, 10 (3),118–125, doi: 10.18245/ijaet.815450.
  • [12] Grahn P., 2014, Electric Vehicle Charging Modeling, PhD dissertation, KTH Royal Institute of Technology. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152237. [access: 24.06.2022].
  • [13] Gryparis E., Papadopoulos P, Leligou H.C., Psomopoulos C.S., 2020, Electricity demand and carbon emission in power generation under high penetration of electric vehicles. A European Union perspective, Energy Reports, 6 (June), 475–486, doi: 10.1016/j.egyr.2020.09.025.
  • [14] Gundogmus, Y. N., 2021, Turkey to update national climate action plan amid ratification of Paris Agreement Anadolu Agency, 2021. https://www.aa.com.tr/en/environment/turkey-to-update-national-climate-action-plan-amid-ratification-of-paris-agreement/2385653.[access: 24.06.2022].
  • [15] Hannis M., 2021, We’ll Always Have Paris, [in] Bohm S., Sullivan S., (eds) in Negotiating Climate Change in Crisis Cambridge, UK, Open Book Publishers, 83-84.
  • [16] Jelica D., Taljegard M.,Thorson L., Johnsson F., 2018, Hourly electricity demand from an electric road system – A Swedish case study, Apply Energy, 228 (June), 141–148, doi: 10.1016/j.apenergy.2018.06.047.
  • [17] Johnsson F., Taljegård M., Olofsson J., Von Bonin M., Gerhardt N., 2020, Electricity supply to electric road systems: impacts on the energy system and environment, Chalmers University.
  • [18] Karakosta C., Pappas C., Marinakis V., Psarras J., 2013, Renewable energy and nuclear power towards sustainable development: Characteristics and prospects, Renewable and Sustainable Energy Reviews, 22, (June) 187–197, doi: 10.1016/j.rser.2013.01.035.
  • [19] Kaya N.E., Gulsen C., 2022, Elektrik üretim kapasitesindeki artışın yüzde 97’si temiz enerjiden,” Anadolu Agency, 2022. https://www.aa.com.tr/tr/cevre/elektrik-uretim-kapasitesindeki-artisin-yuzde-97si-temiz-enerjiden/2509636#:~:text=Böylece%2C Türkiye’de 2021’,8 megavatla termik santraller oluşturdu. .[access: 24.07.2022].
  • [20] Kim, H. C., Wallington T. J., Arsenault R., Bae C., Ahn S., Lee J., 2016, Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis, Environmental Science & Technology, 50 (14),7715–7722, doi: 10.1021/acs.est.6b00830.
  • [21] Ma H., Balthasar F., Tait N., Riera-Palou X., Harrison A., 2012, A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles, Energy Policy,44 (May),160–173, doi: 10.1016/j.enpol.2012.01.034.
  • [22] Ministry of Environment Urbanization and Climate Change Greenhouse Gas Emission by Transport Type, 2020. http://cevreselgostergeler.csb.gov.tr/ulastirma-turune-gore-seragazi-emisyonu-i-85790. [access: 24.07.2022].
  • [23] Mittlefehldt, S., 2018, From appropriate technology to the clean energy economy: renewable energy and environmental politics since the 1970s, Journal of Environmental Studies and Sciences, 8(20), 212–219, doi: 10.1007/s13412-018-0471-z.
  • [24] Moro A., Lonza L., 2016, Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles, Transportation Research Part D: Transport and Environment, 64 (November), 5–14, doi: 10.1016/j.trd.2017.07.012.
  • [25] Mutter A., 2021, Embedding imaginaries-electric vehicles in Sweden’s fossil fuel free future, Futures,129, (March), 102742, doi: 10.1016/j.futures.2021.102742.
  • [26] Nealer R., Hendrickson T. P., 2015, Review of Recent Life-cycle Assessments of Energy and Greenhouse Gas Emissions for Electric Vehicles, Current Sustainable/Renewable Energy Reports, 2(3), 66–73, doi: 10.1007/s40518-015-0033-x.
  • [27] Olovsson J,. Taljegard, M., Von Bonin M., Gerhardt N., Johnsson F., 2021, Impacts of Electric Road Systems on the German and Swedish Electricity Systems - An Energy System Model Comparison, Frontiers in Energy Research, 9, (July), 1-9. doi: 10.3389/fenrg.2021.631200.
  • [28] Oshiro K., Masui T., 2015, Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan,” Energy Policy,81 (C), 215–225, doi: 10.1016/j.enpol.2014.09.010.
  • [29] Porzio J., Scown, C. D., 2021, Life-Cycle Assessment Considerations for Batteries and Battery Materials, Advanced Energy Materials, 11 (33), doi: 10.1002/aenm.202100771.
  • [30] Stamati T.E., Bauer P., 2013, On-road charging of electric vehicles, 2013 Conference: IEEE Transportation Electrification Conference and Expo (ITEC), doi: 10.1109/ITEC.2013.6573511.
  • [31] Taljegard, M, Göransson L Odenberger M, Johnsson F., 2017, Special and dynamic energy demand of the E39 highway – Implications on electrification options, Applied Energy,195(C),681–692, doi: 10.1016/j.apenergy.2017.02.025.
  • [32] Taljegard M, Thorson L, Odenberger M, Johnsson F., 2017, Electric road systems in Norway and Sweden-impact on CO2 emissions and infrastructure cost, IEEE Transportation Electrification Conference and Expo (ITEC), Asia-Pacific, doi: 10.1109/ITEC-AP.2017.8080779.
  • [33] Taljegard M, Thorson L, Odenberger M, Johnsson F., 2020, Large-scale implementation of electric road systems: Associated costs and the impact on CO2 emissions, International Journal of Sustainable Transportation,14(8), 606–619, doi: 10.1080/15568318.2019.1595227.
  • [34] Temizer M., 2021, Turkey’s electricity consumption in 2020 up 0.14%,” Anadolu Agency, 2021. https://www.aa.com.tr/en/economy/turkeys-electricity-consumption-in-2020-up-014-/2097562. [access: 24.06.2022].
  • [35] The General Directorate of Highways Traffic and Transportation Information, 2020, https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Istatistikler/TrafikveUlasimBilgileri/20TrafikUlasimBilgileri.pdf%0A. [access: 24.06.2022].
  • [36] The General Directorate of Highways Traffic and Transportation Information, 2021. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Istatistikler/TrafikveUlasimBilgileri/20TrafikUlasimBilgileri.pdf. [access: 24.06.2022].
  • [37] Turkish Electricity Distribution Sector Report, 2020, https://www.tedas.gov.tr/sx.web.docs/tedas/docs/Stratejik-plan/2020_Yili_Turkiye_Elektrik_Dagitimi_Sektor_Raporu.pdf. [access: 24.07.2022].
  • [38] Turkish Statistical Institute, Greenhouse Gas Emission Statistics, 2021, https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2020-45862. [access: 24.07.2022].
  • [39] Turkish Statistical Institute, Land Vehicles, 2021. https://data.tuik.gov.tr/Bulten/Index?p=Motorlu-Kara-Tasitlari-Aralik-2021-45703. [access: 24.07.2022].
  • [40] Wise D. N., Stoilov D., 2021, Energy Integration in the European Union – Traditional Approaches and Future Research Avenues, 13th Electrical Engineering Faculty Conference, BulEF 2021, 0–6, doi: 10.1109/BulEF53491.2021.9690794.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-283710fd-8781-4203-b800-72d01f8b5a85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.