PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, Mechanical Properties, and Heat Distribution ANSYS model of CP Copper and 316 Stainless Steel Torch Brazing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using torch brazing techniques, 316 stainless steel was brazed to CP copper using flux-coated low silver content filler with 20% Ag. The brazing torch utilized a fuel mixture of propane gas with oxygen to produce the required heating amount due to the possibility of economic interest in employing low-silver-content filler. The brazing filler's braze ability with SUS304 and copper was scrutinized and deeply analyzed. A ferrite barrier layer was made on the stainless-steel side, and an excellent brazed joint was produced. Metallurgical studies using an optical microscope and a scanning electron microscope (SEM) confirmed the production of a ferrite layer. This layer's advantages were carefully examined with metallurgical testing, electron diffraction scanning (EDS), EDS mapping, and EDS line analyses, including preventing copper intergranular penetration into the stainless-steel grain boundary. The mechanical properties of the brazed joint and its usability were assessed through Vickers microhardness and tensile tests on the brazing seam and both base metals. The results of the brazing process showed that using flux-coated low-silver brazing techniques produced strong joints with satisfactory mechanical properties. These techniques are a cost-effective alternative to high-priced brazing fillers with high silver content. Geometrical models simulated the heat distribution using ANSYS and SOLIDWORKS software to analyze penetration depth, joint quality, surface cracks, and the relation between molten filler density variation and the wetting process.
Słowa kluczowe
Twórcy
  • Training and Workshop Center, University of Technology-Iraq, Baghdad, Iraq
  • Training and Workshop Center, University of Technology-Iraq, Baghdad, Iraq
  • Training and Workshop Center, University of Technology-Iraq, Baghdad, Iraq
Bibliografia
  • 1. Fukikoshi T., Watanabe Y., Miyazawa Y., Kanasaki F. Brazing of copper to stainless steel with a low-silver-content brazing filler metal. In: IOP Conference Series: Materials Science and Engineering, 2014; 61(1): 012016.
  • 2. Abdulameer A.G., Mohammed M.S., Abbas A.S. Microstructure variation effects influence on characteristics and mechanical properties of monel 400 and low alloy steel (Astm 387-Gr. 11) Gtaw dissimilar joint. Eastern-European Journal of Enterprise Technologies. 2022; 119(12). https://doi.org/10.15587/1729-4061.2022.266264.
  • 3. Choudhary R.K., Laik A., Mishra P. Microstructure evolution during stainless steel-copper vacuum brazing with a Ag/Cu/Pd filler alloy: effect of nickel plating. Journal of Materials Engineering and Performance. 2017; 26: 1085-1100. https://doi.org/10.1007/s11665-017-2553-6.
  • 4. Jafari M,. Abbasi M., Poursina D., Gheysarian A., Bagheri B. Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints. Journal of Mechanical Science And Technology. 2017; 31: 1135-1142. https://doi.org/10.1007/s12206-016-1217-z.
  • 5. Srikanth S., Saravanan P., Kumar V., Saravanan D., Sivakumar L., Sisodia S., Ravi K., Jha B. Property Enhancement in metastable 301LN austenitic stainless steel through strain-induced martensitic transformation and its reversion (SIMTR) for metro coach manufacture. Int. J. Metall. Eng. 2013; 2(2): 203-213.
  • 6. Mohamed M.S., Abtan A.A., Moosa A.U. Microstructure and mechanical properties assessments of 304 austenitic stainless steel and monel 400 Dissimilar GTAW Weldment. Journal of Composite & Advanced Materials/Revue des Composites et des Matériaux Avancés. 2023; 33(3). https://doi.org/10.18280/rcma.330301.
  • 7. Ramkumar K.D., Arivazhagan N., Narayanan S. Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Materials & Design. 2012; 40: 70-79.
  • 8. Shiri S.G., Nazarzadeh M., Sharifitabar M., Afarani M.S. Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials. Transactions of Nonferrous Metals Society of China. 2012, 22(12), 2937-2942.
  • 9. Durgutlu A., Gülenç B., Findik F. Examination of copper/stainless steel joints formed by explosive welding. Materials & Design. 2005; 26(6): 497-507.
  • 10. Magnabosco I., Ferro .P, Bonollo F., Arnberg L. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel. Materials Science and Engineering: A. 2006; 424(1-2): 163-173.
  • 11. Velu M., Bhat S. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials. Materials & Design. 2013; 47: 793-809.
  • 12. Yao C., Xu B., Zhang X., Huang J., Fu J., Wu Y. Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint. Optics and Lasers in Engineering. 2009, 47(7-8): 807-814.
  • 13. Nowacki J., Danielewski M., Filipek R. Evaluation and computer modelling of mass transport in multicomponent systems in the Au–Ni solder-14-5 PH joints. Journal of Materials Processing Technology. 2004; 157: 213-220.
  • 14. Wang D., Huang J., Tan C., Ma W., Zou Y., Yang Y. Mechanical and corrosion properties of additively manufactured SiC-reinforced stainless steel. Materials Science and Engineering: A. 2022; 841: 143018.
  • 15. Alshalal I., Asaad L.M., Zubaidi F.N. The impact of gas pressure and current on the hardness behaviour of Tig welding stainless steel. In: AIP Conference Proceedings 2022, 2415(1). https://doi.org/10.1063/5.0092615.
  • 16. Fukikoshi T., Watanabe Y., Miyazawa Y., Kanasaki F. Brazing of copper to stainless steel with a low-silver-content brazing filler metal. In: IOP Conference Series: Materials Science and Engineering 2014; 61(1): 012016.
  • 17. Uhlig T., Fedorov V., Elßner M., Wagner G., Weis S. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints. In: IOP Conference Series: Materials Science and Engineering 2017; 181(1): 012032..
  • 18. Nakano J., Malakhov D.V., Purdy G.R. A crystallographically consistent optimization of the Zn–Fe system. Calphad. 2005; 29(4): 276-288.
  • 19. Van Loo F.J. Multiphase diffusion in binary and ternary solid-state systems. Progress in Solid State Chemistry. 1990; 20(1): 47-99.
  • 20. Zhu L., Chen Z., Zhong W.E., Wei C., Cai G., Jiang L., Jin Z., Zhao J.C. Measurement of diffusion coefficients in the bcc phase of the Ti-Sn and Zr-Sn binary systems. Metallurgical and Materials Transactions A. 2019; 50: 1409-1420.
  • 21. Shibli S.M., Meena B.N., Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process. Surface and Coatings Technology. 2015; 262: 210-215.
  • 22. Smith C.S. Grains, phases, and interfaces: An introduction of microstructure. Trans. Metall. Soc. AIME. 1948; 175: 15-51.
  • 23. Chen Y., Yun D., Sui F., Long W., Zhang G., Liu S. Influence of sulphur on the microstructure and properties of Ag–Cu–Zn brazing filler metal. Materials Science and Technology. 2013; 29(10): 1267-1271.
  • 24. Dimitrijević S.P., Manasijević D., Kamberović Ž., Dimitrijević S.B., Mitrić M., Gorgievski M., Mladenović S. Experimental investigation of microstructure and phase transitions in Ag-Cu-Zn brazing alloys. Journal of Materials Engineering and Performance. 2018; 27: 1570-1579.
  • 25. Bobruk E.V., Sauvage X., Zakirov A.M., Enikeev N.A. Tuning the structure and the mechanical properties of ultrafine grain Al–Zn alloys by short time annealing. Reviews on Advanced Materials Science. 2018; 55(1): 61-68.
  • 26. Xue P., Zou Y., He P., Pei Y., Sun H., Ma C., Luo J. Development of low silver AgCuZnSn filler metal for Cu/steel dissimilar metal joining. Metals. 2019; 9(2): 198.
  • 27. Geng Y., Zhang Y., Song K., Jia Y., Li X., Stock H.R., Zhou H., Tian B., Liu Y., Volinsky A.A., Zhang X. Effect of Ce addition on microstructure evolution and precipitation in Cu-Co-Si-Ti alloy during hot deformation. Journal of Alloys and Compounds. 2020; 842: 155666.
  • 28. Khorunov V.F., Stefaniv B.V., Maksymova S.V. Effect of nickel and manganese on structure of Ag–Cu–Zn–Sn system alloys and strength of s. Paton Weld. J. 2014; 4: 22-5.
  • 29. Feng J., Liang S., Guo X., Zhang Y., Song K. Electrical conductivity anisotropy of copper matrix composites reinforced with SiC whiskers. Nanotechnology Reviews. 2019; 8(1): 285-292.
  • 30. Zhang X.H., Zhang Y., Tian B.H., Song K.X., Liu P., Jia Y.L., Chen X.H., An J.C., Zhao Z., Liu Y., Volinsky A.A. Review of nano-phase effects in high strength and conductivity copper alloys/ Nanotechnol. Rev. 2019; 8(1): 383-395.
  • 31. Gangadharan S., Sivakumar D., Venkateswaran T., Kulkarni K. Evolution of microstructure in s of austenitic-martensitic stainless steel with pure silver obtained with Ag-27Cu-5Sn Brazing filler material. Metallurgical and Materials Transactions A. 2016; 47: 6148-6159. doi: 10.1007/s11661-016-3787-x.
  • 32. Kozlova O., Braccini M., Voytovych R., Eustathopoulos N., Martinetti P., Devismes M.F. Brazing copper to alumina using reactive CuAgTi alloys. Acta Materialia. 2010; 58(4): 1252-1260.
  • 33. Yang Y.Y., Zhu Y.M., Peng J.L., Chen J.C., Feng P.P., Huang Z.Q. Excess thermodynamic functions derived from densities and surface tensions of (p-or o-xylene+ ethylene glycol dimethyl ether) between the temperatures (298.15 and 308.15) K. The Journal of Chemical Thermodynamics. 2009; 41(9): 1000-1006.
  • 34. Parsafar G., Kermanpour F., Najafi B. Prediction of the temperature and density dependencies of the parameters of the average effective pair potential using only the LIR equation of state. The Journal of Physical Chemistry B. 1999; 103(34): 7287-92.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-282eea78-06d6-43dc-b0bf-bb3d5091067b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.